The Caledonian orogenic belt of the North Qilian Mountains is an intensely active structure belt. In the process of the Late Caledonian syn-orogeny, the North Qilian-Hexi Corridor area was situated on the tectonic bac...The Caledonian orogenic belt of the North Qilian Mountains is an intensely active structure belt. In the process of the Late Caledonian syn-orogeny, the North Qilian-Hexi Corridor area was situated on the tectonic background of a syn-orogenic basin. In response to the orogenic process of the North Qilian Mountains, typical earthquake event deposits—seismites of the Silurian were widely distributed around Hanxia of Yumen City, the Liyuan River of Sunan County and Biandukou of Minle County. In the Hanxia area, where seismites are typically developed, clastic deposits of tidal-flat facies are the background deposits of the Hanxia Formation. The earthquake event deposits are characterized by sandy mudstone veins, synsedimentary microfractures, micro-corrugated laminations and earthquake breccias, which in turn constitute complex seismites, featuring seismic corrugation, shattering and liquefied sandy mudstone veins, auto-clastic breccias and intraclastic parabreccias. The seismites and tidal flat deposits formed typical sequences of earthquake event deposits.展开更多
The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidite...The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. ENd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.展开更多
The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qili...The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to L ate Silurian shallow marine to tidal flat deposits and the Early and Middle Devo nian terrestrial molasse are developed along the corridor Nanshan. The shallowin g upward succession from subabyssal flysch, shallow marine, tidal flat to terre strial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stag e during the Silurian and Devonian time.展开更多
Abstract: This paper discusses in detail the deformation textures, glide system, petrofabrics and olivine dislocation microstructures of mantle peridotites at Yushigou in the North Qilian Mountains, northwestern China...Abstract: This paper discusses in detail the deformation textures, glide system, petrofabrics and olivine dislocation microstructures of mantle peridotites at Yushigou in the North Qilian Mountains, northwestern China. The peridotites have undergone high-pressure, high-temperature and low-strain rate plastic flow deformation. According to the dynamic recrystallized-grain size of olivine and the average spacing between the dislocation walls as well as the chemical composition of enstatite, the authors calculated the rheological parameters of the ancient upper mantle in the study area as follows: temperatures 1025–1093°C; pressures 3043–4278 MPa; depths 95–132 km; deviatoric stress 28–32 MPa; strain rates 0.2×10?14-2.13×10?14s?1 and equivalent viscosities 0.45×1020-4.65×1020 Pa ? s. These parameters suggest that the position where plastic flow took place was correspondent to the lowvelocity zone beneath the oceanic lithosphere and that oceanization characterized by middle-velocity (1–3 cm/a) sea-floor spreading took place in the North Qilian Mountains during the Early Palaeozoic.展开更多
Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion or...Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion originated during the late stage of plate subduction. Its related Ta'ergou and Xiaoliugou deposits are two of the few large tungsten deposits formed in the plate subduction environment in the world. The U-Pb dating of the zircons from the biotite granite gave a discordant lower intercept age of 183±4 Ma, which implies that the Yanshanian event was probably superimposed on the North Qilian region.展开更多
The Aoyougou ophiolite lies in an early Palaeozoic orogenic belt of the western North Qilian Mountains, near the Aoyougou valley in Gansu Province, northwestern China. It consists of serpentinite, a cumulate sequence ...The Aoyougou ophiolite lies in an early Palaeozoic orogenic belt of the western North Qilian Mountains, near the Aoyougou valley in Gansu Province, northwestern China. It consists of serpentinite, a cumulate sequence of gabbro and diorite, pillow and massive lavas, diabase and chert. Ages of 1840±2 Ma, 1783±2 Ma and 1784±2 Ma on three zircons from diabase, indicate an early Middle Proterozoic age. The diabases and basalts show light rare-earth element enrichment and have relatively high TiO2 contents, characteristic of ocean island basalts. All of the lavas have low MgO, Cr, Ni contents and Mg numbers indicating a more evolved character. They are believed to have been derived from a more mafic parental magma by fractionation of olivine, Cr-spinel and minor plagioclase. Based on the lava geochemistry and regional geology, the Aoyougou ophiolite was probably believed to have formed at a spreading centre in a small marginal basin. Subduction of the newly formed oceanic lithosphere in the Middle Proterozoic produced a trench-arc-basin system, which is preserved in the North Qilian Mountains.展开更多
The exciting source of the active source repeated monitoring is located in the Xiliushui Reservoir in Zhangye,Gansu Province. The system began operating normally on July 9,2015,and we had completed a period of 40 days...The exciting source of the active source repeated monitoring is located in the Xiliushui Reservoir in Zhangye,Gansu Province. The system began operating normally on July 9,2015,and we had completed a period of 40 days of continuous excitation experiment before November 10,2015. Our results reveal that the airgun source has good consistency and repeatability,and the detective system of active source can record signal clearly. The construction of active source repeated exploration projects has achieved some results,which can provide valuable experience for the research of active source repeated exploration. The observation data we obtained makes it possible to follow the temporal and spatial variations of the deep structure of the Qilian Mountain areas.展开更多
This paper summarizes the history of tectono magmatic evolution, the types and backgrounds of mineralization prior to the orogenic period of North Qilian Mountains. It points out that: during the process of Paleozoic...This paper summarizes the history of tectono magmatic evolution, the types and backgrounds of mineralization prior to the orogenic period of North Qilian Mountains. It points out that: during the process of Paleozoic ocean basin opening and closing, the large scale marine volcanism and massive sulfide deposits controlled by sea floor hydrothermal circulation systems are the two sharpest features in the geological developing history of the orogenic belt, which are also the most two important aspects related to each other and should be given a special attention in the geological studies in the region.展开更多
In order to explore the disputed issue concerning the tectonic affinity ofthe ancient ocean mantle of North Qilian Mountains (NQM), geochemical and Sr, Nd, Pb isotopiccompositions of pillow basalts of the Yushigou Oph...In order to explore the disputed issue concerning the tectonic affinity ofthe ancient ocean mantle of North Qilian Mountains (NQM), geochemical and Sr, Nd, Pb isotopiccompositions of pillow basalts of the Yushigou Ophiolite (YSGO) suite from NQM have been analyzedsystematically. The pillow basalts exhibit tholeiitic characteristics, with flatchondrite-normalized REE patterns ((La/Yb)_N = 0.98—1.27). They display no Nb, Ta, Zr, Hf negativeanomalies, and show MORB features in 2Nb-Zr/4-Y and Ti/100-Zr-YX3 tectonic discrimination diagrams.These results indicate that the Yushigou ophiolite is most likely to be formed in a mid-ocean ridgeor mature back-arc basin. Their isotopic data show a relatively broad and enriched ^(87)Sr/^(86)Sr(0.70509 — 0.70700), restricted ^(143)Nd/^(144)Nd (0.512955-0.512978). Pb isotopes are in the rangeof ^(206)Pb/^(204)Pb (18.054-20.562), ^(207)Pb/^(204)Pb (15.537-15.743) and ^(208)Pb/^(204)Pb(38.068-38.530). These isotopic data imply that the basalts originated from the depleted mantle(DMM), with the involvement of enriched mantle components (mainly EMII). Geochemical comparisonsbetween the basalts in YSGO and the MORB-type basalts of ophiolite suites occurring in the knownancient Tethyan tectonic domain indicate that the ancient oceanic mantle represented by YSGO suiteforming in early Paleozoic in the North Qilian Moutains is very similar to the Tethyan mantle inboth trace elements and isotopic compositions. The North Qilian Mountains should be a part of theTethyan tectonic domain in early Paleozoic. This further implies that the Tethyan tectonic domaincan be deduced to early Paleozoic in the study area, which will be helpful to discussing thetectonic affinity and evolution of the North Qilian Mountains.展开更多
Proterozoic volcanic rocks of the western part from the North Qilian Mountains are the products of continental rift volcanism, belonging to continental flood basalts, the petrogeochemistry of which apears to suggest t...Proterozoic volcanic rocks of the western part from the North Qilian Mountains are the products of continental rift volcanism, belonging to continental flood basalts, the petrogeochemistry of which apears to suggest that they are derived from sub-lithospheric mantle plume sources, but that they also show evidence of continental lithosphere components involvement. Their formation is the consequences of plume-lithosphere interactions and is precursive to the opening of the North Qilian Early-Paleozoic ocean basin.展开更多
Studies were carried out on the early phase of fluid inclusions which occur in residual olivines in harzburgite from the Yushigou ophiolitic mantle peridotite, the North Qilian Mountains. Components of these inclusion...Studies were carried out on the early phase of fluid inclusions which occur in residual olivines in harzburgite from the Yushigou ophiolitic mantle peridotite, the North Qilian Mountains. Components of these inclusions, analyzed by micro laser Raman spectroscopy, are dominantly CH4 (70%-95%) with minor H2, N2, H2S,CO2,C2H4,C2H6, and C3H6, but展开更多
After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P...After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P-T paths from different methods indicate that all the high-pressure rocks in the Qilian area recorded P-T paths with clockwise loops starting at the blueschist facies, later reaching peak metamorphism at the blueschist facies, eclogite fades or epidote-amphibolite facies and ending up with the greenschist facies. The incremental Ar-Ar dating shows that the plateau ages for the high-pressure rocks range from 410 to 443 Ma. The plateau ages could be used as a minimum age constraint for the subduction that resulted in the formation of these high-pressure rocks in the Qilian area. It is proposed that the late-stage decompressional and cooling P-T paths with ends at the greenschist facies for these high-pressure rocks probably reflect the uplift process which could occur after shifting the arc-trench tectonic system to the system of continental orogenic belts. The retrograde paths for the high-pressure rocks in the North Qilian tectonic belt are characterized by dramatic decompression with slight cooling, which suggests very rapid exhumation. Petrography supports that the mountain-building for the Qilian mountain range could undergo a very fast process which caused rapid uplift and denudation.展开更多
Cathodoluminescence (CL) imaging and ion microprobe (SHRIMP) U-Pb dating were carried out for zircons from eclogites in the North Qilian Mountains. The results show weighted mean ages of 463 6 Ma and 468 13 Ma for two...Cathodoluminescence (CL) imaging and ion microprobe (SHRIMP) U-Pb dating were carried out for zircons from eclogites in the North Qilian Mountains. The results show weighted mean ages of 463 6 Ma and 468 13 Ma for two samples, respectively. These ages are the earliest record of Caledonian high-pressure metamorphism in the North Qilian Mountains, and they may represent the timing of eclogite-facies metamorphism when the oceanic crust was subducted to mantle depths in this orogenic belt.展开更多
基金supported by the National Natural Science Foundation of China(No.49972078).
文摘The Caledonian orogenic belt of the North Qilian Mountains is an intensely active structure belt. In the process of the Late Caledonian syn-orogeny, the North Qilian-Hexi Corridor area was situated on the tectonic background of a syn-orogenic basin. In response to the orogenic process of the North Qilian Mountains, typical earthquake event deposits—seismites of the Silurian were widely distributed around Hanxia of Yumen City, the Liyuan River of Sunan County and Biandukou of Minle County. In the Hanxia area, where seismites are typically developed, clastic deposits of tidal-flat facies are the background deposits of the Hanxia Formation. The earthquake event deposits are characterized by sandy mudstone veins, synsedimentary microfractures, micro-corrugated laminations and earthquake breccias, which in turn constitute complex seismites, featuring seismic corrugation, shattering and liquefied sandy mudstone veins, auto-clastic breccias and intraclastic parabreccias. The seismites and tidal flat deposits formed typical sequences of earthquake event deposits.
文摘The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. ENd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.
基金TheresearchissponsoredbytheNationalNaturalScienceFoundationofChina (No .4 9972 0 78)
文摘The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to L ate Silurian shallow marine to tidal flat deposits and the Early and Middle Devo nian terrestrial molasse are developed along the corridor Nanshan. The shallowin g upward succession from subabyssal flysch, shallow marine, tidal flat to terre strial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stag e during the Silurian and Devonian time.
基金This research was supported by the National Natural Science Foundation of China grant 49372136.
文摘Abstract: This paper discusses in detail the deformation textures, glide system, petrofabrics and olivine dislocation microstructures of mantle peridotites at Yushigou in the North Qilian Mountains, northwestern China. The peridotites have undergone high-pressure, high-temperature and low-strain rate plastic flow deformation. According to the dynamic recrystallized-grain size of olivine and the average spacing between the dislocation walls as well as the chemical composition of enstatite, the authors calculated the rheological parameters of the ancient upper mantle in the study area as follows: temperatures 1025–1093°C; pressures 3043–4278 MPa; depths 95–132 km; deviatoric stress 28–32 MPa; strain rates 0.2×10?14-2.13×10?14s?1 and equivalent viscosities 0.45×1020-4.65×1020 Pa ? s. These parameters suggest that the position where plastic flow took place was correspondent to the lowvelocity zone beneath the oceanic lithosphere and that oceanization characterized by middle-velocity (1–3 cm/a) sea-floor spreading took place in the North Qilian Mountains during the Early Palaeozoic.
基金a part of research results of a state key research project(No.G1999043200)
文摘Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion originated during the late stage of plate subduction. Its related Ta'ergou and Xiaoliugou deposits are two of the few large tungsten deposits formed in the plate subduction environment in the world. The U-Pb dating of the zircons from the biotite granite gave a discordant lower intercept age of 183±4 Ma, which implies that the Yanshanian event was probably superimposed on the North Qilian region.
基金part of a larger project involving an investigation of ore deposits in the western part of the North Qilian Mountains funded by the National Planning Economic Commission of ChinaIt is also part result of the National Key Fundamental Research Project(G1999043205)financially supported by the Ministry of National Science and Technology.
文摘The Aoyougou ophiolite lies in an early Palaeozoic orogenic belt of the western North Qilian Mountains, near the Aoyougou valley in Gansu Province, northwestern China. It consists of serpentinite, a cumulate sequence of gabbro and diorite, pillow and massive lavas, diabase and chert. Ages of 1840±2 Ma, 1783±2 Ma and 1784±2 Ma on three zircons from diabase, indicate an early Middle Proterozoic age. The diabases and basalts show light rare-earth element enrichment and have relatively high TiO2 contents, characteristic of ocean island basalts. All of the lavas have low MgO, Cr, Ni contents and Mg numbers indicating a more evolved character. They are believed to have been derived from a more mafic parental magma by fractionation of olivine, Cr-spinel and minor plagioclase. Based on the lava geochemistry and regional geology, the Aoyougou ophiolite was probably believed to have formed at a spreading centre in a small marginal basin. Subduction of the newly formed oceanic lithosphere in the Middle Proterozoic produced a trench-arc-basin system, which is preserved in the North Qilian Mountains.
基金sponsored by the Special Fund for Earthquake Scientific Research in the Public Welfare of CEA(201308011)
文摘The exciting source of the active source repeated monitoring is located in the Xiliushui Reservoir in Zhangye,Gansu Province. The system began operating normally on July 9,2015,and we had completed a period of 40 days of continuous excitation experiment before November 10,2015. Our results reveal that the airgun source has good consistency and repeatability,and the detective system of active source can record signal clearly. The construction of active source repeated exploration projects has achieved some results,which can provide valuable experience for the research of active source repeated exploration. The observation data we obtained makes it possible to follow the temporal and spatial variations of the deep structure of the Qilian Mountain areas.
文摘This paper summarizes the history of tectono magmatic evolution, the types and backgrounds of mineralization prior to the orogenic period of North Qilian Mountains. It points out that: during the process of Paleozoic ocean basin opening and closing, the large scale marine volcanism and massive sulfide deposits controlled by sea floor hydrothermal circulation systems are the two sharpest features in the geological developing history of the orogenic belt, which are also the most two important aspects related to each other and should be given a special attention in the geological studies in the region.
基金supported by the National Natural Science Foundation of China(Grant No.40534052).
文摘In order to explore the disputed issue concerning the tectonic affinity ofthe ancient ocean mantle of North Qilian Mountains (NQM), geochemical and Sr, Nd, Pb isotopiccompositions of pillow basalts of the Yushigou Ophiolite (YSGO) suite from NQM have been analyzedsystematically. The pillow basalts exhibit tholeiitic characteristics, with flatchondrite-normalized REE patterns ((La/Yb)_N = 0.98—1.27). They display no Nb, Ta, Zr, Hf negativeanomalies, and show MORB features in 2Nb-Zr/4-Y and Ti/100-Zr-YX3 tectonic discrimination diagrams.These results indicate that the Yushigou ophiolite is most likely to be formed in a mid-ocean ridgeor mature back-arc basin. Their isotopic data show a relatively broad and enriched ^(87)Sr/^(86)Sr(0.70509 — 0.70700), restricted ^(143)Nd/^(144)Nd (0.512955-0.512978). Pb isotopes are in the rangeof ^(206)Pb/^(204)Pb (18.054-20.562), ^(207)Pb/^(204)Pb (15.537-15.743) and ^(208)Pb/^(204)Pb(38.068-38.530). These isotopic data imply that the basalts originated from the depleted mantle(DMM), with the involvement of enriched mantle components (mainly EMII). Geochemical comparisonsbetween the basalts in YSGO and the MORB-type basalts of ophiolite suites occurring in the knownancient Tethyan tectonic domain indicate that the ancient oceanic mantle represented by YSGO suiteforming in early Paleozoic in the North Qilian Moutains is very similar to the Tethyan mantle inboth trace elements and isotopic compositions. The North Qilian Mountains should be a part of theTethyan tectonic domain in early Paleozoic. This further implies that the Tethyan tectonic domaincan be deduced to early Paleozoic in the study area, which will be helpful to discussing thetectonic affinity and evolution of the North Qilian Mountains.
文摘Proterozoic volcanic rocks of the western part from the North Qilian Mountains are the products of continental rift volcanism, belonging to continental flood basalts, the petrogeochemistry of which apears to suggest that they are derived from sub-lithospheric mantle plume sources, but that they also show evidence of continental lithosphere components involvement. Their formation is the consequences of plume-lithosphere interactions and is precursive to the opening of the North Qilian Early-Paleozoic ocean basin.
文摘Studies were carried out on the early phase of fluid inclusions which occur in residual olivines in harzburgite from the Yushigou ophiolitic mantle peridotite, the North Qilian Mountains. Components of these inclusions, analyzed by micro laser Raman spectroscopy, are dominantly CH4 (70%-95%) with minor H2, N2, H2S,CO2,C2H4,C2H6, and C3H6, but
文摘After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P-T paths from different methods indicate that all the high-pressure rocks in the Qilian area recorded P-T paths with clockwise loops starting at the blueschist facies, later reaching peak metamorphism at the blueschist facies, eclogite fades or epidote-amphibolite facies and ending up with the greenschist facies. The incremental Ar-Ar dating shows that the plateau ages for the high-pressure rocks range from 410 to 443 Ma. The plateau ages could be used as a minimum age constraint for the subduction that resulted in the formation of these high-pressure rocks in the Qilian area. It is proposed that the late-stage decompressional and cooling P-T paths with ends at the greenschist facies for these high-pressure rocks probably reflect the uplift process which could occur after shifting the arc-trench tectonic system to the system of continental orogenic belts. The retrograde paths for the high-pressure rocks in the North Qilian tectonic belt are characterized by dramatic decompression with slight cooling, which suggests very rapid exhumation. Petrography supports that the mountain-building for the Qilian mountain range could undergo a very fast process which caused rapid uplift and denudation.
文摘Cathodoluminescence (CL) imaging and ion microprobe (SHRIMP) U-Pb dating were carried out for zircons from eclogites in the North Qilian Mountains. The results show weighted mean ages of 463 6 Ma and 468 13 Ma for two samples, respectively. These ages are the earliest record of Caledonian high-pressure metamorphism in the North Qilian Mountains, and they may represent the timing of eclogite-facies metamorphism when the oceanic crust was subducted to mantle depths in this orogenic belt.