Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identifi...Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.展开更多
The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition ...The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition from arc to initial collision.Here we present results from zircon U-Pb geochronology,whole-rock geochemistry,and Sr-Nd-Pb isotope geochemistry of the Beidaban granites to provide crucial information for geodynamic evolution of NQOB.Zircon U-Pb dating yields an age of 468±10 Ma for the Beidaban granites and most of the Beidaban samples contain amphibole,are potassium-rich,and have A/CNK values ranging from 0.7 to 0.9,illustrating that the Middle Ordovician Beidaban granites are K-rich,metaluminous,calc-alkaline granitoid.The geochemical characteristics indicate that the Beidaban granites are transitional I/S-type granitoids that formed in an arc setting.The isotopic compositions of initial(87 Sr/86 Sr)i values ranging from 0.70545 to 0.71082(0.70842 on average)andεNd(t)values ranging from−10.9 to−6.7(−8.8 on average)with two-stage Nd model ages(T DM2)of 1.74-2.08 Ga suggest that the Beidaban granites originated from Paleoproterozoic crustal materials.In addition,the initial Pb isotopic compositions(^(206)Pb/^(204)Pb=19.14-20.26;^(207)Pb/^(204)Pb=15.71-15.77;^(208)Pb/^(204)Pb=37.70-38.26)and geochemical features,such as high Th/Ta(17.43-30.12)and Rb/Nb(6.01-15.49)values,suggest that the Beidaban granite magma source involved recycled crustal components with igneous rocks.Based on these results in combination with previously published geochronological and geochemical data from other early Paleozoic igneous rocks,we suggest that the timing of the tectonic transition from arc to the initial collision to the fi nal closure of the North Qilian Ocean can be constrained to the Middle-Late Ordovician(ca.468–450 Ma).展开更多
The Caledonian North Qilian orogenic belt lies between the North China plate and the Qaidam mi-croplates, and resulted from the collision among the Qaidam microplate, mid-Qilian block and the North China plate. The or...The Caledonian North Qilian orogenic belt lies between the North China plate and the Qaidam mi-croplates, and resulted from the collision among the Qaidam microplate, mid-Qilian block and the North China plate. The orogen initiated from the rifting of the Late Proterozoic Rodinia, and then it experi-enced stages of Cambrian rift basin and Ordovician archipelagic oceanic basin, and foreland basin during Silurian to Early-Middle Devonian. The average ratios of Al/(Al+Fe+Mn), Al/(Al+Fe), δ Ce, Lan/Ybn and Lan/Cen from cherts of Cambrian Heicigou Formation are 0.797, 0.627, 1.114, 0.994 and 1.034 re-spectively. In the NAS standardized REE distribution pattern, the cherts from Xiangqianshan is slightly HREE enriched, and the cherts from Ganluci and Shiqingdong are plane. All of these features indicated that Cambrian cherts of the Heicigou Formation originated from a continental margin rift background. On the contrary, the average ratios of Al/(Al+Fe+Mn), Al/(Al+Fe), δ Ce, Lan/Ybn, Lan/Cen of the Ordovician chert from Dakecha, Cuijiadun, Shihuigou, Laohushan, Heicigou, Maomaoshan, Bianmagou, Da-chadaban, Baiquanmen, Jiugequan and Angzanggou, are respectively 0.72, 0.58, 0.99, 1.09 and 0.96 respectively. Their NAS standardized REE distribution patterns of most Ordovician cherts are plane mode or slightly HREE enriched. The REE distribution pattern of few samples of cherts are slightly LREE enriched. Characteristics of sedimentary geochemistry and tectonic evolution demonstrated that the Cambrian-Ordovician cherts, associated with rift, oceanic, island arc and back-arc volcanic rocks, was not formed in a typical abyssal oceanic basin or mid-oceanic ridge. On the contrary, they formed in a deepwater basin of continental margin or a archipelagic ocean tectonic setting. Several Early Paleo-zoic ophiolite belts in North Qilian and adjacent periphery Qaidam microplate imply that an archipelagic ocean during Ordovician existed in the east of Pro-Tethys.展开更多
The Laojunshan Formation is a suite of molasse formed during the rapid uplift of the North Qilian Orogenic Belt (NQOB). Forty-one samples of sandstone have been collected from the Sunan and Minle sections in the weste...The Laojunshan Formation is a suite of molasse formed during the rapid uplift of the North Qilian Orogenic Belt (NQOB). Forty-one samples of sandstone have been collected from the Sunan and Minle sections in the western sector and the Gulang and Jingyuan sections in the eastern sector of the NQOB belt. Geochemical analyses of those samples indicated: 1) The MgO+Fe2O3T and Al2O3/SiO2 values are higher, and K2O/Na2O ratios are lower in the western sector than those in the eastern sector. 2) All of them are depleted in Nb and Ta elements. The samples from the western sector are depleted in Rb element and enriched with Sc, Co, Ni, V, and Cr elements in the Upper Crust-normalized patterns. However, those from the eastern sector are depleted in Sr without enrichments of Sc, Co, Ni, V, and Cr. 3) All of the samples display a right-inclined REE pattern af- ter Chondrite-normalized REE pattern. But LaN/YbN and Eu/Eu* ratios of the samples from the western sector are lower than those of the samples from the eastern sector. These geochemical characteristics suggest the prominent input of mafic clast with minor granitic rocks into the Sunan area, felsic clast into the Gulang and Jingyuan area, and both mafic and felsic clast into the Minle area. The angular shapes of gravels imply that these ill-sorted sediments were deposited near their sources without recy- cling. Geochemical features above also demonstrated that no major chemical weathering occurred for the western provenance, but deposits in the eastern sector resulted from low or middle degree chemical weathering. Evidences combining tectonic discriminations and comparisons with potential provenances revealed that sediments in the Sunan area were derived mainly from the North Qilian Continental arc, whereas sediments in the Minle, Gulang, and Jingyuan areas were derived not only from the North Qilian Continental arc but also from the basement of the Middle Qilian block. Integrated with the characteristics of development of Silurian and Devonian, these imply that the orogeny of NQOB is diachronous in the trending direction due to the oblique collision.展开更多
The Caledonian orogenic belt of the North Qilian Mountains is an intensely active structure belt. In the process of the Late Caledonian syn-orogeny, the North Qilian-Hexi Corridor area was situated on the tectonic bac...The Caledonian orogenic belt of the North Qilian Mountains is an intensely active structure belt. In the process of the Late Caledonian syn-orogeny, the North Qilian-Hexi Corridor area was situated on the tectonic background of a syn-orogenic basin. In response to the orogenic process of the North Qilian Mountains, typical earthquake event deposits—seismites of the Silurian were widely distributed around Hanxia of Yumen City, the Liyuan River of Sunan County and Biandukou of Minle County. In the Hanxia area, where seismites are typically developed, clastic deposits of tidal-flat facies are the background deposits of the Hanxia Formation. The earthquake event deposits are characterized by sandy mudstone veins, synsedimentary microfractures, micro-corrugated laminations and earthquake breccias, which in turn constitute complex seismites, featuring seismic corrugation, shattering and liquefied sandy mudstone veins, auto-clastic breccias and intraclastic parabreccias. The seismites and tidal flat deposits formed typical sequences of earthquake event deposits.展开更多
The crustal S-velocity structure and radial anisotropy along a dense linear portable seismic array with 64 broadband seismic stations were investigated from ambient noise tomography with about one-year-long ambient no...The crustal S-velocity structure and radial anisotropy along a dense linear portable seismic array with 64 broadband seismic stations were investigated from ambient noise tomography with about one-year-long ambient noise recordings. The array transverses the southern part of the central North China Craton(CNCC) and western NCC(WNCC) from east to west and reaches the adjacent Qilian Orogenic Belt(QOB). The phase velocity structures of Rayleigh waves at 5–35 s and Love waves at 5–30 s were measured. The crustal S-velocity structures(Vsv and Vsh) were constructed from the dispersion data(Rayleigh and Love waves,respectively) from point-wise linear inversion with prior information of the Moho depth and average crustal Vp/Vs ratio. The radial anisotropy along the profile was calculated based on the discrepancies between Vsv and Vsh as 2×(Vsh.Vsv)/(Vsh+Vsv). The results show distinct structural variations in the three major tectonic units. The crustal architecture in the southern CNCC is complicated and featured with wide-distributed low-velocity zones(LVZs), which may be a reflection of crustal modification resulting from Mesozoic-Cenozoic tectonics and magmatic activities. The pronounced positive radial anisotropy in the lower-lowermost crust beneath the Shanxi-Shaanxi Rift and the neighboring areas could be attributed to the underplating of mantle mafic-ultramafic materials during the Mesozoic-Cenozoic tectonic activation. In southern Ordos, the overall weak lateral velocity variations, relative high velocity and large-scale positive radial anisotropy in mid-lower crust probably suggest that the current crustal structure has preserved its Precambrian tectonic characteristics. The low-velocity westward-dipping sedimentary strata in the Ordos Block could be attributed to the Phanerozoic whole-basin tilting and the uneven erosion since late Cretaceous. Integrated with previous studies, the systematic comparison of crustal architecture was made between the southern and northern part of CNCC-WNCC. The similarities and differences may have a relation with the tectonic events and deformation histories experienced before and after the Paleoproterozoic amalgamation of the NCC. The nearly flat mid-crustal LVZ beneath the southern QOB weakens gradually as it extends to the east, which is a feature probably associated with crustal vertical superpositionand ductile shear deformation under the intensive compressional regime due to the northeastward growth and expansion of the Tibetan Plateau.展开更多
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2022QD055)the Taishan Scholars(Grant No.tstp 20231214)the National Natural Science Foundation of China(Grant No.42372247).
文摘Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust,as well as lithospheric delamination and orogenic collapse.Early Devonian magmatism has been identified in the North Qilian Orogenic Belt(NQOB).This paper reports an integrated study of petrology,whole-rock geochemistry,Sm-Nd isotope and zircon U-Pb dating,as well as Lu-Hf isotopic data,for two Early Devonian intrusive plutons.The Yongchang and Chijin granites yield zircon U-Pb ages of 394-407 Ma and 414 Ma,respectively.Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals,LREE-enriched patterns with negative Eu anomalies and a negative correlation between P_(2)O_(5) and SiO_(2) contents,consistent with geochemical features of I-type granitoids.Zircons from the studied granites display negative to weak positive ε_(Hf)(t)values(−5.7 to 2.1),which agree well with those of negative ε_(Nd)(t)values(−6.4 to−2.9)for the whole-rock samples,indicating that they were derived from the partial melting of Mesoproterozoic crust.Furthermore,low Sr/Y ratios(1.13-21.28)and high zircon saturation temperatures(745℃ to 839℃,with the majority being>800℃)demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source.Taken together,the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during postcollisional extensional collapse.The data obtained in this study,when viewed in conjunction with previous studies,provides more information about the tectonic processes that followed the closure of the North Qilian Ocean.The tectonic transition from continental collision to post-collisional delamination could be constrained to~430 Ma,which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon ε_(Hf)(t)values for granitoids.A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes(a)continental collision and crustal thickening during ca.455-430 Ma,characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism;(b)post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca.430-390 Ma,provided by coeval high-Mg adakitic magmatism,A-type granites and I-type granitoids with low Sr-Y ratios.
基金This study was fi nancially supported by the Youth Science and Technology Talent Recruitment Project of Gansu Province(2022-19)Technological Innovation Project of Gansu Provincial Department of Natural Resources(2022-3,2022-4,2022-28)+2 种基金National Natural Science Foundation of China(Nos.42073059 and 42303034)Outstanding Youth Fund of Anhui Provincial Department of Education(No.2022AH020084)Doctoral Startup Foundation of Suzhou University(2021BSK038)。
文摘The tectonic evolution and crustal accretion process of the North Qilian Orogenic Belt(NQOB)are still under debate because of a lack of integrated constraints,especially the identifi cation of the tectonic transition from arc to initial collision.Here we present results from zircon U-Pb geochronology,whole-rock geochemistry,and Sr-Nd-Pb isotope geochemistry of the Beidaban granites to provide crucial information for geodynamic evolution of NQOB.Zircon U-Pb dating yields an age of 468±10 Ma for the Beidaban granites and most of the Beidaban samples contain amphibole,are potassium-rich,and have A/CNK values ranging from 0.7 to 0.9,illustrating that the Middle Ordovician Beidaban granites are K-rich,metaluminous,calc-alkaline granitoid.The geochemical characteristics indicate that the Beidaban granites are transitional I/S-type granitoids that formed in an arc setting.The isotopic compositions of initial(87 Sr/86 Sr)i values ranging from 0.70545 to 0.71082(0.70842 on average)andεNd(t)values ranging from−10.9 to−6.7(−8.8 on average)with two-stage Nd model ages(T DM2)of 1.74-2.08 Ga suggest that the Beidaban granites originated from Paleoproterozoic crustal materials.In addition,the initial Pb isotopic compositions(^(206)Pb/^(204)Pb=19.14-20.26;^(207)Pb/^(204)Pb=15.71-15.77;^(208)Pb/^(204)Pb=37.70-38.26)and geochemical features,such as high Th/Ta(17.43-30.12)and Rb/Nb(6.01-15.49)values,suggest that the Beidaban granite magma source involved recycled crustal components with igneous rocks.Based on these results in combination with previously published geochronological and geochemical data from other early Paleozoic igneous rocks,we suggest that the timing of the tectonic transition from arc to the initial collision to the fi nal closure of the North Qilian Ocean can be constrained to the Middle-Late Ordovician(ca.468–450 Ma).
基金Sponsored by the National Natural Science Foundation of China (Grant Nos. 40672080 and 40621002)the Developing Plan of Innovation Group of Ministry of Education of China (Grant No. IRT0546)
文摘The Caledonian North Qilian orogenic belt lies between the North China plate and the Qaidam mi-croplates, and resulted from the collision among the Qaidam microplate, mid-Qilian block and the North China plate. The orogen initiated from the rifting of the Late Proterozoic Rodinia, and then it experi-enced stages of Cambrian rift basin and Ordovician archipelagic oceanic basin, and foreland basin during Silurian to Early-Middle Devonian. The average ratios of Al/(Al+Fe+Mn), Al/(Al+Fe), δ Ce, Lan/Ybn and Lan/Cen from cherts of Cambrian Heicigou Formation are 0.797, 0.627, 1.114, 0.994 and 1.034 re-spectively. In the NAS standardized REE distribution pattern, the cherts from Xiangqianshan is slightly HREE enriched, and the cherts from Ganluci and Shiqingdong are plane. All of these features indicated that Cambrian cherts of the Heicigou Formation originated from a continental margin rift background. On the contrary, the average ratios of Al/(Al+Fe+Mn), Al/(Al+Fe), δ Ce, Lan/Ybn, Lan/Cen of the Ordovician chert from Dakecha, Cuijiadun, Shihuigou, Laohushan, Heicigou, Maomaoshan, Bianmagou, Da-chadaban, Baiquanmen, Jiugequan and Angzanggou, are respectively 0.72, 0.58, 0.99, 1.09 and 0.96 respectively. Their NAS standardized REE distribution patterns of most Ordovician cherts are plane mode or slightly HREE enriched. The REE distribution pattern of few samples of cherts are slightly LREE enriched. Characteristics of sedimentary geochemistry and tectonic evolution demonstrated that the Cambrian-Ordovician cherts, associated with rift, oceanic, island arc and back-arc volcanic rocks, was not formed in a typical abyssal oceanic basin or mid-oceanic ridge. On the contrary, they formed in a deepwater basin of continental margin or a archipelagic ocean tectonic setting. Several Early Paleo-zoic ophiolite belts in North Qilian and adjacent periphery Qaidam microplate imply that an archipelagic ocean during Ordovician existed in the east of Pro-Tethys.
基金supported by National Natural Science Foundation of China (Grant Nos. 40672080 and 40921062)"111" Project (Grant No. B08030)Excellent Youth Teacher Fund of China University of Geosciences (Wuhan)
文摘The Laojunshan Formation is a suite of molasse formed during the rapid uplift of the North Qilian Orogenic Belt (NQOB). Forty-one samples of sandstone have been collected from the Sunan and Minle sections in the western sector and the Gulang and Jingyuan sections in the eastern sector of the NQOB belt. Geochemical analyses of those samples indicated: 1) The MgO+Fe2O3T and Al2O3/SiO2 values are higher, and K2O/Na2O ratios are lower in the western sector than those in the eastern sector. 2) All of them are depleted in Nb and Ta elements. The samples from the western sector are depleted in Rb element and enriched with Sc, Co, Ni, V, and Cr elements in the Upper Crust-normalized patterns. However, those from the eastern sector are depleted in Sr without enrichments of Sc, Co, Ni, V, and Cr. 3) All of the samples display a right-inclined REE pattern af- ter Chondrite-normalized REE pattern. But LaN/YbN and Eu/Eu* ratios of the samples from the western sector are lower than those of the samples from the eastern sector. These geochemical characteristics suggest the prominent input of mafic clast with minor granitic rocks into the Sunan area, felsic clast into the Gulang and Jingyuan area, and both mafic and felsic clast into the Minle area. The angular shapes of gravels imply that these ill-sorted sediments were deposited near their sources without recy- cling. Geochemical features above also demonstrated that no major chemical weathering occurred for the western provenance, but deposits in the eastern sector resulted from low or middle degree chemical weathering. Evidences combining tectonic discriminations and comparisons with potential provenances revealed that sediments in the Sunan area were derived mainly from the North Qilian Continental arc, whereas sediments in the Minle, Gulang, and Jingyuan areas were derived not only from the North Qilian Continental arc but also from the basement of the Middle Qilian block. Integrated with the characteristics of development of Silurian and Devonian, these imply that the orogeny of NQOB is diachronous in the trending direction due to the oblique collision.
基金supported by the National Natural Science Foundation of China(No.49972078).
文摘The Caledonian orogenic belt of the North Qilian Mountains is an intensely active structure belt. In the process of the Late Caledonian syn-orogeny, the North Qilian-Hexi Corridor area was situated on the tectonic background of a syn-orogenic basin. In response to the orogenic process of the North Qilian Mountains, typical earthquake event deposits—seismites of the Silurian were widely distributed around Hanxia of Yumen City, the Liyuan River of Sunan County and Biandukou of Minle County. In the Hanxia area, where seismites are typically developed, clastic deposits of tidal-flat facies are the background deposits of the Hanxia Formation. The earthquake event deposits are characterized by sandy mudstone veins, synsedimentary microfractures, micro-corrugated laminations and earthquake breccias, which in turn constitute complex seismites, featuring seismic corrugation, shattering and liquefied sandy mudstone veins, auto-clastic breccias and intraclastic parabreccias. The seismites and tidal flat deposits formed typical sequences of earthquake event deposits.
基金supported by the National Natural Science Foundation of China(Grant Nos.41225016,91414301&41688103)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB03010802)
文摘The crustal S-velocity structure and radial anisotropy along a dense linear portable seismic array with 64 broadband seismic stations were investigated from ambient noise tomography with about one-year-long ambient noise recordings. The array transverses the southern part of the central North China Craton(CNCC) and western NCC(WNCC) from east to west and reaches the adjacent Qilian Orogenic Belt(QOB). The phase velocity structures of Rayleigh waves at 5–35 s and Love waves at 5–30 s were measured. The crustal S-velocity structures(Vsv and Vsh) were constructed from the dispersion data(Rayleigh and Love waves,respectively) from point-wise linear inversion with prior information of the Moho depth and average crustal Vp/Vs ratio. The radial anisotropy along the profile was calculated based on the discrepancies between Vsv and Vsh as 2×(Vsh.Vsv)/(Vsh+Vsv). The results show distinct structural variations in the three major tectonic units. The crustal architecture in the southern CNCC is complicated and featured with wide-distributed low-velocity zones(LVZs), which may be a reflection of crustal modification resulting from Mesozoic-Cenozoic tectonics and magmatic activities. The pronounced positive radial anisotropy in the lower-lowermost crust beneath the Shanxi-Shaanxi Rift and the neighboring areas could be attributed to the underplating of mantle mafic-ultramafic materials during the Mesozoic-Cenozoic tectonic activation. In southern Ordos, the overall weak lateral velocity variations, relative high velocity and large-scale positive radial anisotropy in mid-lower crust probably suggest that the current crustal structure has preserved its Precambrian tectonic characteristics. The low-velocity westward-dipping sedimentary strata in the Ordos Block could be attributed to the Phanerozoic whole-basin tilting and the uneven erosion since late Cretaceous. Integrated with previous studies, the systematic comparison of crustal architecture was made between the southern and northern part of CNCC-WNCC. The similarities and differences may have a relation with the tectonic events and deformation histories experienced before and after the Paleoproterozoic amalgamation of the NCC. The nearly flat mid-crustal LVZ beneath the southern QOB weakens gradually as it extends to the east, which is a feature probably associated with crustal vertical superpositionand ductile shear deformation under the intensive compressional regime due to the northeastward growth and expansion of the Tibetan Plateau.