The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the...The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the atmospheric circulation field and temperature field data of ERA-Interim for every six hours,the NCCV processes during the early summer(June)seasons from 1979 to 2018 were objectively identified.Then,the NCCV processes were classified using a machine learning method(k-means)according to the characteristic parameters of the activity path information.The rationality of the classification results was verified from two aspects,as follows:(1)the atmospheric circulation configuration of the NCCV on various paths;and(2)its influences on the climate conditions in the NEC.The obtained results showed that the activity paths of the NCCV could be divided into four types according to such characteristics as the generation origin,movement direction,and movement velocity of the NCCV.These included the generation-eastward movement type in the east of the Mongolia Plateau(eastward movement type or type A);generation-southeast longdistance movement type in the upstream of the Lena River(southeast long-distance movement type or type B);generationeastward less-movement type near Lake Baikal(eastward less-movement type or type C);and the generation-southward less-movement type in eastern Siberia(southward less-movement type or type D).There were obvious differences observed in the atmospheric circulation configuration and the climate impact of the NCCV on the four above-mentioned types of paths,which indicated that the classification results were reasonable.展开更多
The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NC...The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.展开更多
Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identi...Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identification methods of defining the annual beginning and ending dates of Northeast China CV and MS rainy periods are developed respectively. The annual beginning date of the CV (MS) rainy period is as follows. In a period from April to August, if daily regional mean precipitation ryi is larger than yearly regional mean precipitation R (or 2R) on a certain day, the station precipitation rs is larger than the station yearly mean precipitation (r/ (or 2(r)) in at least 50% of stations in Northeast China, and this condition is satisfied in the following 2 (7) days, then this date is defined as the beginning date of the CV (MS) rainy period. While the definition of the ending date of the MS rainy period shows the opposite process to its beginning date. With this objective identification method, the multi-year average (1981-2010) beginning date of the CV rainy period is May 3, the beginning date of the MS rainy period is June 27, the ending day of the CV rainy period is defined as the day before the beginning date of the MS rainy period, and the ending date of the MS rainy period is August 29. Meanwhile, corresponding anomaly analysis at a 500-hPa geopotential height, 850-hPa wind, Omega and relative humidity fields all show that the definitions of the average beginning and ending dates of the CV and MS rainy periods have a certain circulation meaning. Furthermore, the daily evolution of the CV index, meridional and zonal wind index, etc. all show that these objectively defined beginning and ending dates of the CV and MS rainy periods have climate significance.展开更多
Arctic changes influence not only temperature and precipitation in the midlatitudes but also contribute to severe convection.This study investigates an extreme gale event that occurred on 30 April 2021 in East China a...Arctic changes influence not only temperature and precipitation in the midlatitudes but also contribute to severe convection.This study investigates an extreme gale event that occurred on 30 April 2021 in East China and was forced by an Arctic potential vorticity(PV)anomaly intrusion.Temperature advection steered by storms contributed to the equatorward propagation of Arctic high PV,forming the Northeast China cold vortex(NCCV).At the upper levels,a PV southward intrusion guided the combination of the polar jet and the subtropical jet,providing strong vertical wind shear and downward momentum transportation to the event.The PV anomaly cooled the upper troposphere and the northern part of East China,whereas the lower levels over southern East China were dominated by local warm air,thus establishing strong instability and baroclinicity.In addition,the entrainment of Arctic dry air strengthened the surface pressure gradient by evaporation cooling.Capturing the above mechanism has the potential to improve convective weather forecasts under climate change.This study suggests that the more frequent NCCV-induced gale events in recent years are partly due to high-latitude waviness and storm activities,and this hypothesis needs to be investigated using more cases.展开更多
Based on the final analysis data with horizontal resolution of 1°× 1°(four times a day) from the National Centers for Environmental Prediction(NCEP), a typical Northeast China cold vortex(NCCV) during t...Based on the final analysis data with horizontal resolution of 1°× 1°(four times a day) from the National Centers for Environmental Prediction(NCEP), a typical Northeast China cold vortex(NCCV) during the spring of 2010 was examined with the quasi-Lagrange- form eddy flux circulation(EFC) budget equation. Results indicated that the mechanisms that account for the development, maintenance, and attenuation of the cyclone varied with levels and stages. Displacement of the cyclone and transports by background environmental circulations dominated the variation of the cyclone in the middle and upper levels, whereas displacement and divergence associated with the cyclone dominated the evolution of the NCCV in the middle and lower levels. Moreover, interactions between the NCCV and other subsynoptic weather systems were important for the development of the cyclone, and the pattern of background environmental circulations was also important for the evolution of the NCCV, since the cyclone enhanced(weakened) as it moved from areas of low(high) vorticity to high(low) ones.展开更多
By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The...By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The influence of the sea surface temperature(SST) and outgoing longwave radiation(OLR) on the Northeast cold vortex and subtropical high was studied.As was shown in the results,in summer,there was a positive correlation between the Northeast cold vortex and the subtropical high,and an anti-phase relationship existed between the threshold characteristic line of GMS-SST=28 ℃ and the height index of the Northeast cold vortex and the subtropical high.With the gradual northward moving of the threshold characteristic line,the subtropical high was weakening,and the Northeast cold vortex was increasing and strengthening.展开更多
A Northeast China cold vortex(NCCV) that maintained from 0200 UTC 3 July to 0500 UTC 3 July 2013 and caused several heavy rainfall events was analyzed in detail to reveal its quadrant-averaged structure and main maint...A Northeast China cold vortex(NCCV) that maintained from 0200 UTC 3 July to 0500 UTC 3 July 2013 and caused several heavy rainfall events was analyzed in detail to reveal its quadrant-averaged structure and main maintaining mechanisms during its mature stage. Results indicated the vortex's intensity, divergence, ascending motions, precipitable water(PW), and thermal structures were all characterized by significant unevenness, and their main pattern changed gradually during the mature stage. Mechanisms accounting for the maintenance of the NCCV were also characterized by remarkable unevenness. Within different quadrants, dominant factors for the vortex's evolution may have differed from each other significantly. The NCCV-averaged vorticity budget revealed that the vertical advection of vorticity, which is closely related to convective activities, was the most favorable factor for maintaining the NCCV, whereas the tilting effect, which is closely related to the vertical shear of the horizontal wind(horizontal vorticity), was the most detrimental factor.展开更多
As an important atmospheric circulation system in the mid-high latitudes of East Asia,the Northeast China cold vortex(NCCV)substantially influences weather and climate in this region.So far,systematic assessment on th...As an important atmospheric circulation system in the mid-high latitudes of East Asia,the Northeast China cold vortex(NCCV)substantially influences weather and climate in this region.So far,systematic assessment on the performance of numerical prediction of the NCCVs has not been carried out.Based on the Beijing Climate Centre(BCC)and the ECMWF model hindcast and forecast data that participated in the Sub-seasonal to Seasonal(S2S)Prediction Project,this study systematically examines the performance of both models in simulating and forecasting the NCCVs at the sub-seasonal timescale.The results demonstrate that the two models can effectively capture the seasonal variations in the intensity,active days,and spatial distribution of NCCVs;however,the duration of NCCVs is shorter and the intensity is weaker in the models than in the observations.Diagnostic analysis shows that the differences in the intensity and location of the East Asian subtropical westerly jet and the wave train pattern from North Atlantic to East Asia may be responsible for the deficient simulation of NCCV events in the S2S models.Nonetheless,in the deterministic forecasts,BCC and ECMWF provide skillful prediction on the anomalous numbers of NCCV days and intensity at a lead time of 4-5(5-6)pentads,and the skill limit of the ensemble mean is 1-2 pentads longer than that of individual members.In the probabilistic forecasts of daily NCCV activities,BCC and ECMWF exhibit a forecasting skill of approximately 7 and 11 days,respectively;both models show seasonal dependency in the simulation performance and forecast skills of NCCV events,with better performance in winter than in summer.The results from this study provide helpful references for further improvement of the S2S prediction of NCCVs.展开更多
The Northeast China cold vortex(NCCV)is one of the main synoptic-scale systems causing short-duration heavy rainfall(SDHR)in Northeast China.Environmental conditions(e.g.,water vapor,instability,and vertical wind shea...The Northeast China cold vortex(NCCV)is one of the main synoptic-scale systems causing short-duration heavy rainfall(SDHR)in Northeast China.Environmental conditions(e.g.,water vapor,instability,and vertical wind shear)are known to be distinctly different over the four quadrants of NCCVs,rendering prediction of the SDHR related to NCCVs(NCCV_SDHR)more challenging.Based on 5-yr hourly rainfall observations from 3196 automatic weather stations and ERA5 reanalysis data,10,232 NCCV_SDHR events were identified and divided into four quadrant groups according to their relative position to the center of the NCCV(CVC).The results show that the southeast quadrant features the highest frequency of SDHR,with stronger intensity,longer duration,and wider coverage;and the SDHR in different quadrants presents different formation mechanisms and varied temporal evolution.A new coordinate system is established relative to the CVC that uses the CVC as the origin and the radius of the NCCV(r CV)as the unit distance.In this new coordinate system,all of the NCCV_SDHR events in the 5-yr study period are synthesized.It is found that the occurrence frequency of NCCV_SDHR initially increases and then decreases with increasing distance from the CVC.The highest frequency occurs mainly between 0.8 and 2.5 times r CV from the CVC in the southeast quadrant.This can be attributed to the favorable conditions,such as convergence of the low-level shear line and abundant water vapor,which are concentrated in this region.Furthermore,high-frequency NCCV_SDHR larger than 50 mm(NCCV_SDHR50)is observed to be closer to the CVC.When NCCV_SDHR50occurs,the NCCV is in closer proximity to the subtropical high,resulting in stronger low-level convergence and more abundant water vapor.Additionally,there are lower lifting condensation levels and stronger 0-6-and 0-1-km vertical wind shears in these environments.These findings provide a valuable reference for more accurate prediction of NCCV_SDHR.展开更多
The NCEP data were applied to analyze causes of 'late spring coldness' occurring twice in Dalian in late April and mid May of 2008.The results showed that the 500 hPa Baikal ridge of high pressure maintained o...The NCEP data were applied to analyze causes of 'late spring coldness' occurring twice in Dalian in late April and mid May of 2008.The results showed that the 500 hPa Baikal ridge of high pressure maintained or strengthened in a stable manner.The delivery of accumulated cold air toward southeast was along the northwest airstream before the ridge.Therefore,the ridge of high pressure over Lake Baikal provided access for the cold air southward so that the cold air could continue to decline,resulting in the appearance of low temperature in late April and formation of 'late spring coldness'.The Northeast cold vortex(NECV) occurred frequently in mid May.There was a high possibility for low temperature and pluvial damages over Dalian.Thus the phenomenon of 'late spring coldness' appeared again.展开更多
Severe flooding occurred in Northeast China(NEC) in summer 2013. Compared with the rainfall climatology of the region, the rainy season began earlier in 2013 and two main rainy periods occurred from late June to ear...Severe flooding occurred in Northeast China(NEC) in summer 2013. Compared with the rainfall climatology of the region, the rainy season began earlier in 2013 and two main rainy periods occurred from late June to early July and from mid July to early August, respectively. During the summer season of 2013, the western Pacific subtropical high(WPSH) was located farther westward, which strengthened the southerly winds on its west side in the lower troposphere. Under this circulation pattern, more water vapor was transported to North China and NEC. Another moisture transport pathway to NEC was traced to the cross-equatorial flow over the Bay of Bengal. In mid–high latitudes in summer 2013, the Northeast Cold Vortex(NECV) was much stronger and remained stable over NEC. Thus, the cold air flow from its northwest side frequently met with the warm and wet air from the south to form stronger moisture convergence at lower levels in the troposphere, resulting in increased precipitation over the region. Correlation analysis indicated that the NECV played a more direct role than the WPSH. Synoptic analyses of the two heaviest flood cases on 2 and 16 July confirmed this conclusion. The four wettest summers in NEC before 2000 were also analyzed and the results were consistent with the conclusion that both the WPSH and the NECV led to the intense rainfall in NEC, but the NECV had a more direct role.展开更多
In the mid 20th century, great efforts were made to investigate the formation process of high-latitude cold vortex, which is regarded as a major weather system in the atmospheric circulation. In the late 1970s, Chines...In the mid 20th century, great efforts were made to investigate the formation process of high-latitude cold vortex, which is regarded as a major weather system in the atmospheric circulation. In the late 1970s, Chinese researchers noticed that the Northeast China cold vortex (NECV) is an active and frequently occurring weather system over Northeast Asia, which is generated under specific conditions of topography and land-sea thermal contrast on the local and regional scales. Thereby, the NECV study was broadened to include synoptic situations, mesoscale and dynamic features, the heavy rain process, etc. Since the 21st century, in the context of the global warming, more attention has been paid to studies of the mechanisms that cause the NECV variations during spring and early summer as well as the climatic impacts of the NECV system. Note that the NECV activity, frequent or not, not only affects local temperature and precipitation anomalies, but also regulates the amount of precipitation over northern China, the Huai River basin, and the middle and lower reaches of Yangtze River. The NECV influence can even reach the Guangdon~ Guangxi region. However, compared to the achievements for the blocking system study, theoretical studies with regard to the NECV system are still insufficient. Research activities regarding the mechanisms for the NECV formation, particularly theoretical studies using linear or weak nonlinear methods need to be strengthened in the future. Meanwhile, great efforts should be made to deepen our understanding of the relations of the NECV system to the oceanic thermal forcing, the low-frequency atmospheric variations over mid-high latitudes, and the global warming.展开更多
A mesoscale weather research and forecasting(WRF)model was used to simulate a cold vortex that developed over Northeast China during June 19–23,2010.The simulation used high vertical resolution to reproduce the key f...A mesoscale weather research and forecasting(WRF)model was used to simulate a cold vortex that developed over Northeast China during June 19–23,2010.The simulation used high vertical resolution to reproduce the key features of the cold vortex development.Characteristics of the associated stratosphere-troposphere exchange(STE),specifically the spatiotemporal distribution of the cross-tropopause mass flux(CTF),were investigated using the Wei formula.The simulation results showed that the net mass exchange induced by the cold vortex was controlled by stratosphere-to-troposphere transport(STT)processes.In the pre-formation stage of the cold vortex(i.e.,the development of the trough and ridge),active exchange was evident.Over the lifecycle of the cold vortex,STT processes prevailed at the rear of the trough and moving vortex,whereas troposphere-to-stratosphere transport(TST)processes prevailed at the front end.This spatial pattern was caused by temporal fluctuations of the tropopause.However,because of the cancellation of the upward flux by the downward flux,the contribution of the tropopause fluctuation term to the net mass exchange was only minor.In this case,horizontal motion dominated the net mass exchange.The time evolution of the CTF exhibited three characteristics:(1)the predominance of the STT during the pre-formation stage;(2)the formation and development of the cold vortex,in which the CTF varied in a fluctuating pattern from TST to STT to TST;and(3)the prevalence of the STT during the decay stage.展开更多
Record-breaking numbers of Northeast China cold vortex(NCCV)occurred during the late spring(April-May)of 2021,which provided favorable background for more severe convection weather(such as hailstorm and tornado)happen...Record-breaking numbers of Northeast China cold vortex(NCCV)occurred during the late spring(April-May)of 2021,which provided favorable background for more severe convection weather(such as hailstorm and tornado)happened and struck Jiangsu and Hubei provinces,China,causing heavy casualties and property losses.To better understand the possible causes of extremely abnormal NCCV activities,the external forcing and dynamical analysis was conducted.The results show that the extreme NCCV activity is regulated by the preceding sea surface temperature(SST)anomalies in the tropical Pacific,the snow conditions over the Tibetan Plateau,and the wave-mean flow interaction over the Eurasian continent.During the preceding autumn and winter in 2020,a moderate La Niña event occurred over the tropical Pacific,which triggered the Pacific-North America teleconnection pattern(PNA)like wave train and further dispersed the Rossby wave energy downstream along the mid-latitude westerly jet,forming a zonal wave train over the Eurasian continent.Moreover,the second minimum snow depth was recorded over the southeastern Tibetan Plateau during the boreal winter of 2020/2021,which induced a concurrent local anomalous anticyclone and a cyclone over northeast Asia in the following spring.Finally,the anomalous circulation is capable of achieving energy from the mean state through barotropic energy conversion and strengthening the downstream wave train accordingly.This study highlights the joint impacts of external forcings and internal atmospheric processes on the NCCV activity.展开更多
基金This research was jointly supported by the National Natural Science Foundation of China(Grant No.42005037)the Liaoning Provincial Natural Science Foundation Project(PhD Start-up Research Fund 2019-BS-214),the Special Scientific Research Project for the Forecaster(Grant No.CMAYBY2018-018)+2 种基金a Key Technical Project of Liaoning Meteorological Bureau(Grant No.LNGJ201903)the National Key Research and Development Project(Grant No.2018YFC1505601)the Open Foundation Project of the Institute of Atmospheric Environment,China Meteorological Administration(Grant Nos.2020SYIAE08 and 2020SYIAEZD5).
文摘The classification of the Northeast China Cold Vortex(NCCV)activity paths is an important way to analyze its characteristics in detail.Based on the daily precipitation data of the northeastern China(NEC)region,and the atmospheric circulation field and temperature field data of ERA-Interim for every six hours,the NCCV processes during the early summer(June)seasons from 1979 to 2018 were objectively identified.Then,the NCCV processes were classified using a machine learning method(k-means)according to the characteristic parameters of the activity path information.The rationality of the classification results was verified from two aspects,as follows:(1)the atmospheric circulation configuration of the NCCV on various paths;and(2)its influences on the climate conditions in the NEC.The obtained results showed that the activity paths of the NCCV could be divided into four types according to such characteristics as the generation origin,movement direction,and movement velocity of the NCCV.These included the generation-eastward movement type in the east of the Mongolia Plateau(eastward movement type or type A);generation-southeast longdistance movement type in the upstream of the Lena River(southeast long-distance movement type or type B);generationeastward less-movement type near Lake Baikal(eastward less-movement type or type C);and the generation-southward less-movement type in eastern Siberia(southward less-movement type or type D).There were obvious differences observed in the atmospheric circulation configuration and the climate impact of the NCCV on the four above-mentioned types of paths,which indicated that the classification results were reasonable.
基金jointly supported by the National Natural Science Foundation of China (Grant No. 42005037)Special Project of Innovative Development, CMA (CXFZ2021J022, CXFZ2022J008, and CXFZ2021J028)+1 种基金Liaoning Provincial Natural Science Foundation Project (Ph.D. Start-up Research Fund 2019-BS214)Research Project of the Institute of Atmospheric Environment, CMA (2021SYIAEKFMS08, 2020SYIAE08 and 2021SYIAEKFMS09)
文摘The Northeast China cold vortex(NCCV)during late summer(from July to August)is identified and classified into three types in terms of its movement path using machine learning.The relationships of the three types of NCCV intensity with atmospheric circulations in late summer,the sea surface temperature(SST),and Arctic sea ice concentration(SIC)in the preceding months,are analyzed.The sensitivity tests by the Community Atmosphere Model version 5.3(CAM5.3)are used to verify the statistical results.The results show that the coordination pattern of East Asia-Pacific(EAP)and Lake Baikal high pressure forced by SST anomalies in the North Indian Ocean dipole mode(NIOD)during the preceding April and SIC anomalies in the Nansen Basin during the preceding June results in an intensity anomaly for the first type of NCCV.While the pattern of high pressure over the Urals and Okhotsk Sea and low pressure over Lake Baikal during late summer-which is forced by SST anomalies in the South Indian Ocean dipole mode(SIOD)in the preceding June and SIC anomalies in the Barents Sea in the preceding April-causes the intensity anomaly of the second type.The third type is atypical and is not analyzed in detail.Sensitivity tests,jointly forced by the SST and SIC in the preceding period,can well reproduce the observations.In contrast,the results forced separately by the SST and SIC are poor,indicating that the NCCV during late summer is likely influenced by the coordinated effects of both SST and SIC in the preceding months.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41205040 and 41375078)the State Key Development Program for Basic Research,China(Grant No.2012CB955203)the Special Scientific Research Project for Public Interest(Grant No.GYHY201306021)
文摘Considering the differences between the Northeast China Cold Vortex (CV) and the Mid-Summer (MS) rainy period and their corresponding atmospheric circulations are comprehensively analyzed, and the objective identification methods of defining the annual beginning and ending dates of Northeast China CV and MS rainy periods are developed respectively. The annual beginning date of the CV (MS) rainy period is as follows. In a period from April to August, if daily regional mean precipitation ryi is larger than yearly regional mean precipitation R (or 2R) on a certain day, the station precipitation rs is larger than the station yearly mean precipitation (r/ (or 2(r)) in at least 50% of stations in Northeast China, and this condition is satisfied in the following 2 (7) days, then this date is defined as the beginning date of the CV (MS) rainy period. While the definition of the ending date of the MS rainy period shows the opposite process to its beginning date. With this objective identification method, the multi-year average (1981-2010) beginning date of the CV rainy period is May 3, the beginning date of the MS rainy period is June 27, the ending day of the CV rainy period is defined as the day before the beginning date of the MS rainy period, and the ending date of the MS rainy period is August 29. Meanwhile, corresponding anomaly analysis at a 500-hPa geopotential height, 850-hPa wind, Omega and relative humidity fields all show that the definitions of the average beginning and ending dates of the CV and MS rainy periods have a certain circulation meaning. Furthermore, the daily evolution of the CV index, meridional and zonal wind index, etc. all show that these objectively defined beginning and ending dates of the CV and MS rainy periods have climate significance.
基金supported by the China National Science Foundation (Grant No. 41705029)Anhui Joint Foundation (Grant No.2208085UQ11)+2 种基金China Meteorological Administration special grants on innovation and development (Grant No. CXFZ2023J017)China Meteorological Administration special grants on decision-making meteorological service (Grant No. JCZX2022005)support from the innovation team at Anhui Meteorological Bureau
文摘Arctic changes influence not only temperature and precipitation in the midlatitudes but also contribute to severe convection.This study investigates an extreme gale event that occurred on 30 April 2021 in East China and was forced by an Arctic potential vorticity(PV)anomaly intrusion.Temperature advection steered by storms contributed to the equatorward propagation of Arctic high PV,forming the Northeast China cold vortex(NCCV).At the upper levels,a PV southward intrusion guided the combination of the polar jet and the subtropical jet,providing strong vertical wind shear and downward momentum transportation to the event.The PV anomaly cooled the upper troposphere and the northern part of East China,whereas the lower levels over southern East China were dominated by local warm air,thus establishing strong instability and baroclinicity.In addition,the entrainment of Arctic dry air strengthened the surface pressure gradient by evaporation cooling.Capturing the above mechanism has the potential to improve convective weather forecasts under climate change.This study suggests that the more frequent NCCV-induced gale events in recent years are partly due to high-latitude waviness and storm activities,and this hypothesis needs to be investigated using more cases.
基金supported by the National Natural Science Foundation of China (Grant No. 41205027)the National Key Basic Research Program of China (Grant No. 2012CB 417201)
文摘Based on the final analysis data with horizontal resolution of 1°× 1°(four times a day) from the National Centers for Environmental Prediction(NCEP), a typical Northeast China cold vortex(NCCV) during the spring of 2010 was examined with the quasi-Lagrange- form eddy flux circulation(EFC) budget equation. Results indicated that the mechanisms that account for the development, maintenance, and attenuation of the cyclone varied with levels and stages. Displacement of the cyclone and transports by background environmental circulations dominated the variation of the cyclone in the middle and upper levels, whereas displacement and divergence associated with the cyclone dominated the evolution of the NCCV in the middle and lower levels. Moreover, interactions between the NCCV and other subsynoptic weather systems were important for the development of the cyclone, and the pattern of background environmental circulations was also important for the evolution of the NCCV, since the cyclone enhanced(weakened) as it moved from areas of low(high) vorticity to high(low) ones.
文摘By using the monthly mean grid data of NCAR/NCEP reanalysis at 500 hPa geopotential height from 1958 to 1997,the relationship between the Northeast cold vortex and the western Pacific subtropical high was analyzed.The influence of the sea surface temperature(SST) and outgoing longwave radiation(OLR) on the Northeast cold vortex and subtropical high was studied.As was shown in the results,in summer,there was a positive correlation between the Northeast cold vortex and the subtropical high,and an anti-phase relationship existed between the threshold characteristic line of GMS-SST=28 ℃ and the height index of the Northeast cold vortex and the subtropical high.With the gradual northward moving of the threshold characteristic line,the subtropical high was weakening,and the Northeast cold vortex was increasing and strengthening.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41205027, 41375053, and 41375058)
文摘A Northeast China cold vortex(NCCV) that maintained from 0200 UTC 3 July to 0500 UTC 3 July 2013 and caused several heavy rainfall events was analyzed in detail to reveal its quadrant-averaged structure and main maintaining mechanisms during its mature stage. Results indicated the vortex's intensity, divergence, ascending motions, precipitable water(PW), and thermal structures were all characterized by significant unevenness, and their main pattern changed gradually during the mature stage. Mechanisms accounting for the maintenance of the NCCV were also characterized by remarkable unevenness. Within different quadrants, dominant factors for the vortex's evolution may have differed from each other significantly. The NCCV-averaged vorticity budget revealed that the vertical advection of vorticity, which is closely related to convective activities, was the most favorable factor for maintaining the NCCV, whereas the tilting effect, which is closely related to the vertical shear of the horizontal wind(horizontal vorticity), was the most detrimental factor.
基金Supported by the Research Project of China Meteorological Administration(CMA)Institute of Atmospheric Environment(2021SYI AEKFMS11)National Key Research and Development Program of China(2021YFA0718000)+3 种基金National Natural Science Foundation of China(42175052 and 42005037)Joint Research Project for Meteorological Capacity Improvement(22NLTSY008)CMA Special Project for Innovative Development(CXFZ2022J008)CMA Youth Innovation Team Fund(CMA2024QN06 and CMA2024QN05).
文摘As an important atmospheric circulation system in the mid-high latitudes of East Asia,the Northeast China cold vortex(NCCV)substantially influences weather and climate in this region.So far,systematic assessment on the performance of numerical prediction of the NCCVs has not been carried out.Based on the Beijing Climate Centre(BCC)and the ECMWF model hindcast and forecast data that participated in the Sub-seasonal to Seasonal(S2S)Prediction Project,this study systematically examines the performance of both models in simulating and forecasting the NCCVs at the sub-seasonal timescale.The results demonstrate that the two models can effectively capture the seasonal variations in the intensity,active days,and spatial distribution of NCCVs;however,the duration of NCCVs is shorter and the intensity is weaker in the models than in the observations.Diagnostic analysis shows that the differences in the intensity and location of the East Asian subtropical westerly jet and the wave train pattern from North Atlantic to East Asia may be responsible for the deficient simulation of NCCV events in the S2S models.Nonetheless,in the deterministic forecasts,BCC and ECMWF provide skillful prediction on the anomalous numbers of NCCV days and intensity at a lead time of 4-5(5-6)pentads,and the skill limit of the ensemble mean is 1-2 pentads longer than that of individual members.In the probabilistic forecasts of daily NCCV activities,BCC and ECMWF exhibit a forecasting skill of approximately 7 and 11 days,respectively;both models show seasonal dependency in the simulation performance and forecast skills of NCCV events,with better performance in winter than in summer.The results from this study provide helpful references for further improvement of the S2S prediction of NCCVs.
基金Supported by the National Natural Science Foundation of China(42175017 and 42305013)China Meteorological Administration Special Innovation and Development Program(CXFZ2022J059,CXFZ2022J003,CXFZ2023J013,and CXFZ2024J021)+2 种基金China Meteorological Administration Key Innovation Team Fund(CMA2022ZD07)China Meteorological Administration Youth Innovation Team Fund(CMA2024QN05)Research Project of the Chinese Academy of Meteorological Sciences(2023Z019)。
文摘The Northeast China cold vortex(NCCV)is one of the main synoptic-scale systems causing short-duration heavy rainfall(SDHR)in Northeast China.Environmental conditions(e.g.,water vapor,instability,and vertical wind shear)are known to be distinctly different over the four quadrants of NCCVs,rendering prediction of the SDHR related to NCCVs(NCCV_SDHR)more challenging.Based on 5-yr hourly rainfall observations from 3196 automatic weather stations and ERA5 reanalysis data,10,232 NCCV_SDHR events were identified and divided into four quadrant groups according to their relative position to the center of the NCCV(CVC).The results show that the southeast quadrant features the highest frequency of SDHR,with stronger intensity,longer duration,and wider coverage;and the SDHR in different quadrants presents different formation mechanisms and varied temporal evolution.A new coordinate system is established relative to the CVC that uses the CVC as the origin and the radius of the NCCV(r CV)as the unit distance.In this new coordinate system,all of the NCCV_SDHR events in the 5-yr study period are synthesized.It is found that the occurrence frequency of NCCV_SDHR initially increases and then decreases with increasing distance from the CVC.The highest frequency occurs mainly between 0.8 and 2.5 times r CV from the CVC in the southeast quadrant.This can be attributed to the favorable conditions,such as convergence of the low-level shear line and abundant water vapor,which are concentrated in this region.Furthermore,high-frequency NCCV_SDHR larger than 50 mm(NCCV_SDHR50)is observed to be closer to the CVC.When NCCV_SDHR50occurs,the NCCV is in closer proximity to the subtropical high,resulting in stronger low-level convergence and more abundant water vapor.Additionally,there are lower lifting condensation levels and stronger 0-6-and 0-1-km vertical wind shears in these environments.These findings provide a valuable reference for more accurate prediction of NCCV_SDHR.
文摘The NCEP data were applied to analyze causes of 'late spring coldness' occurring twice in Dalian in late April and mid May of 2008.The results showed that the 500 hPa Baikal ridge of high pressure maintained or strengthened in a stable manner.The delivery of accumulated cold air toward southeast was along the northwest airstream before the ridge.Therefore,the ridge of high pressure over Lake Baikal provided access for the cold air southward so that the cold air could continue to decline,resulting in the appearance of low temperature in late April and formation of 'late spring coldness'.The Northeast cold vortex(NECV) occurred frequently in mid May.There was a high possibility for low temperature and pluvial damages over Dalian.Thus the phenomenon of 'late spring coldness' appeared again.
基金Supported by the National Basic Research Program of China(2013CB430203)Technology Innovation Project of the Inner Mongolia Meteorological Bureau(nmqxkjcx201606)Climate and Climate Change Innovation Team Project of the Inner Mongolia Meteorological Bureau
文摘Severe flooding occurred in Northeast China(NEC) in summer 2013. Compared with the rainfall climatology of the region, the rainy season began earlier in 2013 and two main rainy periods occurred from late June to early July and from mid July to early August, respectively. During the summer season of 2013, the western Pacific subtropical high(WPSH) was located farther westward, which strengthened the southerly winds on its west side in the lower troposphere. Under this circulation pattern, more water vapor was transported to North China and NEC. Another moisture transport pathway to NEC was traced to the cross-equatorial flow over the Bay of Bengal. In mid–high latitudes in summer 2013, the Northeast Cold Vortex(NECV) was much stronger and remained stable over NEC. Thus, the cold air flow from its northwest side frequently met with the warm and wet air from the south to form stronger moisture convergence at lower levels in the troposphere, resulting in increased precipitation over the region. Correlation analysis indicated that the NECV played a more direct role than the WPSH. Synoptic analyses of the two heaviest flood cases on 2 and 16 July confirmed this conclusion. The four wettest summers in NEC before 2000 were also analyzed and the results were consistent with the conclusion that both the WPSH and the NECV led to the intense rainfall in NEC, but the NECV had a more direct role.
基金Supported by the National Natural Science Foundation of China(41630424,41275096,41175083,41305059,and 41405094)China Meteorological Administration Special Public Welfare Research Fund(GYHY201106016 and GYHY201006020)
文摘In the mid 20th century, great efforts were made to investigate the formation process of high-latitude cold vortex, which is regarded as a major weather system in the atmospheric circulation. In the late 1970s, Chinese researchers noticed that the Northeast China cold vortex (NECV) is an active and frequently occurring weather system over Northeast Asia, which is generated under specific conditions of topography and land-sea thermal contrast on the local and regional scales. Thereby, the NECV study was broadened to include synoptic situations, mesoscale and dynamic features, the heavy rain process, etc. Since the 21st century, in the context of the global warming, more attention has been paid to studies of the mechanisms that cause the NECV variations during spring and early summer as well as the climatic impacts of the NECV system. Note that the NECV activity, frequent or not, not only affects local temperature and precipitation anomalies, but also regulates the amount of precipitation over northern China, the Huai River basin, and the middle and lower reaches of Yangtze River. The NECV influence can even reach the Guangdon~ Guangxi region. However, compared to the achievements for the blocking system study, theoretical studies with regard to the NECV system are still insufficient. Research activities regarding the mechanisms for the NECV formation, particularly theoretical studies using linear or weak nonlinear methods need to be strengthened in the future. Meanwhile, great efforts should be made to deepen our understanding of the relations of the NECV system to the oceanic thermal forcing, the low-frequency atmospheric variations over mid-high latitudes, and the global warming.
基金the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 41305038)
文摘A mesoscale weather research and forecasting(WRF)model was used to simulate a cold vortex that developed over Northeast China during June 19–23,2010.The simulation used high vertical resolution to reproduce the key features of the cold vortex development.Characteristics of the associated stratosphere-troposphere exchange(STE),specifically the spatiotemporal distribution of the cross-tropopause mass flux(CTF),were investigated using the Wei formula.The simulation results showed that the net mass exchange induced by the cold vortex was controlled by stratosphere-to-troposphere transport(STT)processes.In the pre-formation stage of the cold vortex(i.e.,the development of the trough and ridge),active exchange was evident.Over the lifecycle of the cold vortex,STT processes prevailed at the rear of the trough and moving vortex,whereas troposphere-to-stratosphere transport(TST)processes prevailed at the front end.This spatial pattern was caused by temporal fluctuations of the tropopause.However,because of the cancellation of the upward flux by the downward flux,the contribution of the tropopause fluctuation term to the net mass exchange was only minor.In this case,horizontal motion dominated the net mass exchange.The time evolution of the CTF exhibited three characteristics:(1)the predominance of the STT during the pre-formation stage;(2)the formation and development of the cold vortex,in which the CTF varied in a fluctuating pattern from TST to STT to TST;and(3)the prevalence of the STT during the decay stage.
基金National Natural Science Foundation of China(41905067,42175052)National Key Research and Development Program(2021YFA0718000)+1 种基金Innovative Development Special Project of China Meteorological Administration(CXFZ2021Z011,CXFZ2021Z010 and CXFZ2022J039)science funding from Beijing Meteorological Service(BMBKJ202003005).
文摘Record-breaking numbers of Northeast China cold vortex(NCCV)occurred during the late spring(April-May)of 2021,which provided favorable background for more severe convection weather(such as hailstorm and tornado)happened and struck Jiangsu and Hubei provinces,China,causing heavy casualties and property losses.To better understand the possible causes of extremely abnormal NCCV activities,the external forcing and dynamical analysis was conducted.The results show that the extreme NCCV activity is regulated by the preceding sea surface temperature(SST)anomalies in the tropical Pacific,the snow conditions over the Tibetan Plateau,and the wave-mean flow interaction over the Eurasian continent.During the preceding autumn and winter in 2020,a moderate La Niña event occurred over the tropical Pacific,which triggered the Pacific-North America teleconnection pattern(PNA)like wave train and further dispersed the Rossby wave energy downstream along the mid-latitude westerly jet,forming a zonal wave train over the Eurasian continent.Moreover,the second minimum snow depth was recorded over the southeastern Tibetan Plateau during the boreal winter of 2020/2021,which induced a concurrent local anomalous anticyclone and a cyclone over northeast Asia in the following spring.Finally,the anomalous circulation is capable of achieving energy from the mean state through barotropic energy conversion and strengthening the downstream wave train accordingly.This study highlights the joint impacts of external forcings and internal atmospheric processes on the NCCV activity.