The seasonality of the interaction between convection over the western Pacific and general circulation in the Northern Hemisphere (NH) is analyzed in the present paper with singular value decomposition (SVD) and empir...The seasonality of the interaction between convection over the western Pacific and general circulation in the Northern Hemisphere (NH) is analyzed in the present paper with singular value decomposition (SVD) and empirical orthogonal function (EOF) analysis approaches, based on 500 hPa monthly mean geopotential height data and high-cloud amount data. The analyses demonstrate that coupled dominant patterns in the interaction between the convection over the western Pacific and the general circulation in NH are different in various seasons. In spring, the convection over the western Pacific is closely related with the western Atlantic (WA) and North Pacific (NP) like patterns of the general circulation in NH, and some associations between the WA and NP like patterns and the El Ni o /Southern Oscillation (ENSO) cycle are also existed. The Pacific Japan (PJ) pattern is the dominant pattern in the interaction between the interannual variabilities of the convection over the western Pacific and the general circulation in NH summer. The WA like pattern and 3-4 year period oscillation are also relatively obvious for the summer case. In autumn, the convection over the western Pacific is closely linked with the Eurasian (EU) like pattern and the Atlantic oscillation in the general circulation in NH, it is suggested that in autumn the variation of convective activity over the western Pacific is largely affected by the general circulation anomaly (cold air from high latitudes ) through EU like teleconnection pattern. Abrupt change happened by the end of 1980′s in the autumn interaction. The strong interaction between the western Pacific (WP) and EU like patterns in the general circulation in NH and the convection over the western Pacific and a linear trend of increasing of this interaction are also suggested in winter. It is also demonstrated that the interaction in summer and winter is stronger than in the transition seasons (spring and autumn).展开更多
文摘The seasonality of the interaction between convection over the western Pacific and general circulation in the Northern Hemisphere (NH) is analyzed in the present paper with singular value decomposition (SVD) and empirical orthogonal function (EOF) analysis approaches, based on 500 hPa monthly mean geopotential height data and high-cloud amount data. The analyses demonstrate that coupled dominant patterns in the interaction between the convection over the western Pacific and the general circulation in NH are different in various seasons. In spring, the convection over the western Pacific is closely related with the western Atlantic (WA) and North Pacific (NP) like patterns of the general circulation in NH, and some associations between the WA and NP like patterns and the El Ni o /Southern Oscillation (ENSO) cycle are also existed. The Pacific Japan (PJ) pattern is the dominant pattern in the interaction between the interannual variabilities of the convection over the western Pacific and the general circulation in NH summer. The WA like pattern and 3-4 year period oscillation are also relatively obvious for the summer case. In autumn, the convection over the western Pacific is closely linked with the Eurasian (EU) like pattern and the Atlantic oscillation in the general circulation in NH, it is suggested that in autumn the variation of convective activity over the western Pacific is largely affected by the general circulation anomaly (cold air from high latitudes ) through EU like teleconnection pattern. Abrupt change happened by the end of 1980′s in the autumn interaction. The strong interaction between the western Pacific (WP) and EU like patterns in the general circulation in NH and the convection over the western Pacific and a linear trend of increasing of this interaction are also suggested in winter. It is also demonstrated that the interaction in summer and winter is stronger than in the transition seasons (spring and autumn).