The Triassic Jialingjiang Formation and Leikoupo Formation are characterized by thick salt layers. Three tectono-stratigraphic sequences can be identified according to detachment layers of Lower-Middle Triassic salt b...The Triassic Jialingjiang Formation and Leikoupo Formation are characterized by thick salt layers. Three tectono-stratigraphic sequences can be identified according to detachment layers of Lower-Middle Triassic salt beds in the northern Sichuan Basin, i.e. the sub-salt sequence composed of Sinian to the Lower Triassic Feixianguan Formation, the salt sequence of the Lower Triassic Jialingjiang Formation and Mid-Triassic Leikoupou Formation, and the supra-salt sequence composed of continental clastics of the Upper-Triassic Xujiahe Formation, Jurassic and Cretaceous. A series of specific structural styles, such as intensively deformed belt of basement-involved imbricated thrust belt, basement-involved and salt-detached superimposed deformed belt, buried salt-related detached belt, duplex, piling triangle zone and pop-up, developed in the northern Sichuan Basin. The relatively thin salt beds, associated with the structural deformation of the northern Sichuan Basin, might act as a large decollement layer. The deformation mechanisms in the northern Sichuan Basin included regional compression and shortening, plastic flow and detachment, tectonic upwelling and erosion, gravitational sliding and spreading. The source rocks in the northern Sichuan Basin are strata underlying the salt layer, such as the Cambrian, Silurian and Permian. The structural deformation related to the Triassic salt controlled the styles of traps for hydrocarbon. The formation and development of hydrocarbon traps in the northern Sichuan Basin might have a bearing upon the Lower-Middle Triassic salt sequences which were favorable to the hydrocarbon accumulation and preservation. The salt layers in the Lower-Middle Triassic formed the main cap rocks and are favorable for the accumulation and preservation of hydrocarbon.展开更多
Based on 2D and 3D seismic data,the latest drilling data and field outcrop data of the northern slope of the Central Sichuan paleo-uplift,the structural analysis method is used to analyze unconformity development char...Based on 2D and 3D seismic data,the latest drilling data and field outcrop data of the northern slope of the Central Sichuan paleo-uplift,the structural analysis method is used to analyze unconformity development characteristics and fault characteristics during the key structural transformation period,discussing the influence of the structural characteristics on the hydrocarbon accumulation of deep carbonate rocks.The results show that:(1)The two key unconformities of the Tongwan and Caledonian periods were primarily developed in deep carbonate rocks.Firstly,Tongwan’s unconformities are characterized by regional disconformities between the second and third members of the Dengying Formation,the top formation of the Sinian and the lower Cambrian,strips of which zigzag through the north and south sides of the study area.Secondly,the Caledonian unconformity is characterized by a regional unconformable contact between the lower Permian and the ower Paleozoic strata.From NE to SW,the age of the strata,which were subject to erosion,changes from new to old,the denudation distribution showing as a nose-shaped structure which inclines towards the ENE.(2)Boundary fault and transtensional strike-slip faults developed in the Sinian to Paleozoic strata.In profile,there are three types of structural styles:steep and erect,flower structures,’Y’and reversed’Y’type faults.In plane view,the Sinian developed extensional boundary faults extending in an almost NS direction,strike-slip faults developing and extending linearly in approximately EW,WNW and NE strikes in the Cambrian,with characteristically more in the south and less in the north.(3)The faults in the northern slope show obvious zonal deformations in transverse view as well as significant stages and stratified activity in a longitudinal direction.Among them,the activity of faults in the Sinian was the strongest,followed by the activity in the Cambrian period,the activity intensity of faults in the Permian period being the weakest.This fault activity can be divided into four periods:Sinian,Cambrian-Permian,the early Indosinian period and the late Indosinian-Himalayan period,the transtensional strikeslip faults being the products of oblique extensions of pre-existing weak zones in the Xingkai and Emei taphrogenesis,with a particular inheritance in the main faults.(4)Combined with hydrocarbon accumulation factors,it is considered that the epigenetic karstification of the Tongwan and Caledonian unconformities in the northern slope controlled the formation and distribution of carbonate karst reservoirs over a large area,also acting as a good pathway for oil and gas migration.The extensional faults developed at the margin of the NS trending rift,controlling the sag-platform sedimentary pattern in the Dengying Formation of the Sinian.Strike-slip faults in NE,WNW and ENE directions may control the microgeomorphological pattern inside the platform and intensify the differential distribution of grain beach facies.The multi-stage hereditary activity of strike-slip faults not only improved the porosity and permeability of the reservoirs,but also acted as the main channel of oil and gas migration,providing favorable conditions for the development of the current multi-layer gasbearing scenario in the northern slope of the Central Sichuan Basin.展开更多
This study investigated the characteristics and genesis of reservoirs in the 2^(nd) and 4^(th) members of Sinian Dengying Formation in northern Sichuan and its surrounding areas, on the basis of outcrop, drilling core...This study investigated the characteristics and genesis of reservoirs in the 2^(nd) and 4^(th) members of Sinian Dengying Formation in northern Sichuan and its surrounding areas, on the basis of outcrop, drilling cores and thin section observation and geochemical analysis. The reservoirs of 2^(nd) member are distributed in the middle part of the stratum. The reservoir quality is controlled by supergene karst and the distribution of mound-shoal complex. The bedded elongated isolated algal framework solution-cave and the residual "grape-lace" cave, which are partially filled with multi-stage dolosparite, constituted the main reservoir space of the 2^(nd) member. There is no asphalt distribution in the pores. The pore connectivity is poor, and the porosity and permeability of the reservoir is relatively low. The reservoirs of 4^(th) member were distributed in the upper and top part of the stratum. The reservoir quality is controlled by burial dissolution and the distribution of mound-shoal complex. The bedded algal framework solution-pores or caves, intercrystalline pores and intercrystalline dissolved pores constituted the main reservoir space of the 4^(th) member. It's partially filled with asphalt and quartz, without any dolosparite fillings in the pores and caves. The pore connectivity is good. Most of the 4^(th) member reservoirs had medium-low porosity and low permeability, and, locally, medium-high porosity and medium permeability. Affected by the development of mound-shoal complex and heterogeneous dissolution, the platform margin along Ningqiang, Guangyuan, Jiange and Langzhong is the most favorable region for reservoir development. Deep buried Dengying Formation in the guangyuan and langzhong areas should be the most important hydrocarbon target for the future exploration.展开更多
Described in detail in this paper are the geochemical charederistics of thesandstone-type urboum deposits in northern Sichuan Province. Favoable and unfavor-able conditions for the enrichment of uranium are explored o...Described in detail in this paper are the geochemical charederistics of thesandstone-type urboum deposits in northern Sichuan Province. Favoable and unfavor-able conditions for the enrichment of uranium are explored on the basis of the elementalabundances and ratios of U, Th and K determined by gamma-ray spectroscopy Gamma-ray spectroscopic (U, Th and K) and XRF analyses (As, Ba) are helpful to distinguishU-bearing light-colorea sandstones from U-barren light-colored ones and red sandstones(red claystone) from light-colored sandstones. Therefore, the favorable target area forprospecting the sandstone-type uranium deposits can be defined in northern SichuanProvince.展开更多
At the end of Early Cambrian time,the Sichuan basin(South China)was located in a wide carbonate platform,with hundreds of meters of carbonate deposited.The Longwangmiao Formation carbonate in Sichuan basin is partiall...At the end of Early Cambrian time,the Sichuan basin(South China)was located in a wide carbonate platform,with hundreds of meters of carbonate deposited.The Longwangmiao Formation carbonate in Sichuan basin is partially to completely dolomitized,displaying a mottled texture in the northern area of the exposure.The mottled dolomitic limestone developed parallel to bedding,with shape irregular boundaries with limestone that has not been dolomitized.The mottled dolomite is composed of powder crystalline and finely crystalline dolomite,while the matrix limestone is composed of micritic calcite.the isotopic composition of mottled dolomite(δ^(13)C=+0.29‰PDB,δ^(18)O=1.15‰PDB)is similar to that of micrite calcite(δ^(13)C=0.49‰PDB,δ^(18)O=1.45‰PDB).Both isotopic values and trace element data indicate that the dolomitized fluid is originated from sea water.Some beds contain gypsum pseudomorphs and mud cracks,indicating a shallow and evaporative environment with local high salinity during deposition.Dolomitization likely took place early,in part as a result of sea water salinity concentration.Trace fossils thalassinoides horizontalis,thalassinoides callianassa and planolites developed in the Longwangmiao Formation,and the sharp edges of mottled dolomite are similar to these trace fossils.The beds are intensely bioturbated.In the burrow network,the sediments and burrow fill were coarse and loose with little clay,and it is interpreted here as being easier to be dolomitized than the surrounding sediments.Partial dolomitization is thus interpreted to have occurred in the burrow system,and the degree of dolomitization was related to the degree of bioturbation,which is controlled by the trace-making creatures.展开更多
基金the National Natural Science Foundation of China(Grant No.40672143,40472107 and 40172076)the National Major Fundamental Research and Development Project(Grant No.2005CB422107 and G1999043305)+1 种基金Development Foundation of Key Laboratory for Hydrocarbon Accumulation of the Education Ministry(Grant No.2003-01)Project of Southern Exploration and Development Division Company,SINOPEC(2003-04).
文摘The Triassic Jialingjiang Formation and Leikoupo Formation are characterized by thick salt layers. Three tectono-stratigraphic sequences can be identified according to detachment layers of Lower-Middle Triassic salt beds in the northern Sichuan Basin, i.e. the sub-salt sequence composed of Sinian to the Lower Triassic Feixianguan Formation, the salt sequence of the Lower Triassic Jialingjiang Formation and Mid-Triassic Leikoupou Formation, and the supra-salt sequence composed of continental clastics of the Upper-Triassic Xujiahe Formation, Jurassic and Cretaceous. A series of specific structural styles, such as intensively deformed belt of basement-involved imbricated thrust belt, basement-involved and salt-detached superimposed deformed belt, buried salt-related detached belt, duplex, piling triangle zone and pop-up, developed in the northern Sichuan Basin. The relatively thin salt beds, associated with the structural deformation of the northern Sichuan Basin, might act as a large decollement layer. The deformation mechanisms in the northern Sichuan Basin included regional compression and shortening, plastic flow and detachment, tectonic upwelling and erosion, gravitational sliding and spreading. The source rocks in the northern Sichuan Basin are strata underlying the salt layer, such as the Cambrian, Silurian and Permian. The structural deformation related to the Triassic salt controlled the styles of traps for hydrocarbon. The formation and development of hydrocarbon traps in the northern Sichuan Basin might have a bearing upon the Lower-Middle Triassic salt sequences which were favorable to the hydrocarbon accumulation and preservation. The salt layers in the Lower-Middle Triassic formed the main cap rocks and are favorable for the accumulation and preservation of hydrocarbon.
基金funded by the National Key Research and Development Program‘Deep Land Resources Exploration and Exploitation’special project(2017YFC0603106)the Project of Science and Technology Department of the Southwest Oil and Gas Field Company,Petrochina(20210301-02)。
文摘Based on 2D and 3D seismic data,the latest drilling data and field outcrop data of the northern slope of the Central Sichuan paleo-uplift,the structural analysis method is used to analyze unconformity development characteristics and fault characteristics during the key structural transformation period,discussing the influence of the structural characteristics on the hydrocarbon accumulation of deep carbonate rocks.The results show that:(1)The two key unconformities of the Tongwan and Caledonian periods were primarily developed in deep carbonate rocks.Firstly,Tongwan’s unconformities are characterized by regional disconformities between the second and third members of the Dengying Formation,the top formation of the Sinian and the lower Cambrian,strips of which zigzag through the north and south sides of the study area.Secondly,the Caledonian unconformity is characterized by a regional unconformable contact between the lower Permian and the ower Paleozoic strata.From NE to SW,the age of the strata,which were subject to erosion,changes from new to old,the denudation distribution showing as a nose-shaped structure which inclines towards the ENE.(2)Boundary fault and transtensional strike-slip faults developed in the Sinian to Paleozoic strata.In profile,there are three types of structural styles:steep and erect,flower structures,’Y’and reversed’Y’type faults.In plane view,the Sinian developed extensional boundary faults extending in an almost NS direction,strike-slip faults developing and extending linearly in approximately EW,WNW and NE strikes in the Cambrian,with characteristically more in the south and less in the north.(3)The faults in the northern slope show obvious zonal deformations in transverse view as well as significant stages and stratified activity in a longitudinal direction.Among them,the activity of faults in the Sinian was the strongest,followed by the activity in the Cambrian period,the activity intensity of faults in the Permian period being the weakest.This fault activity can be divided into four periods:Sinian,Cambrian-Permian,the early Indosinian period and the late Indosinian-Himalayan period,the transtensional strikeslip faults being the products of oblique extensions of pre-existing weak zones in the Xingkai and Emei taphrogenesis,with a particular inheritance in the main faults.(4)Combined with hydrocarbon accumulation factors,it is considered that the epigenetic karstification of the Tongwan and Caledonian unconformities in the northern slope controlled the formation and distribution of carbonate karst reservoirs over a large area,also acting as a good pathway for oil and gas migration.The extensional faults developed at the margin of the NS trending rift,controlling the sag-platform sedimentary pattern in the Dengying Formation of the Sinian.Strike-slip faults in NE,WNW and ENE directions may control the microgeomorphological pattern inside the platform and intensify the differential distribution of grain beach facies.The multi-stage hereditary activity of strike-slip faults not only improved the porosity and permeability of the reservoirs,but also acted as the main channel of oil and gas migration,providing favorable conditions for the development of the current multi-layer gasbearing scenario in the northern slope of the Central Sichuan Basin.
基金Supported by the China National Science and Technology Major Project(2017ZX05001001-002)
文摘This study investigated the characteristics and genesis of reservoirs in the 2^(nd) and 4^(th) members of Sinian Dengying Formation in northern Sichuan and its surrounding areas, on the basis of outcrop, drilling cores and thin section observation and geochemical analysis. The reservoirs of 2^(nd) member are distributed in the middle part of the stratum. The reservoir quality is controlled by supergene karst and the distribution of mound-shoal complex. The bedded elongated isolated algal framework solution-cave and the residual "grape-lace" cave, which are partially filled with multi-stage dolosparite, constituted the main reservoir space of the 2^(nd) member. There is no asphalt distribution in the pores. The pore connectivity is poor, and the porosity and permeability of the reservoir is relatively low. The reservoirs of 4^(th) member were distributed in the upper and top part of the stratum. The reservoir quality is controlled by burial dissolution and the distribution of mound-shoal complex. The bedded algal framework solution-pores or caves, intercrystalline pores and intercrystalline dissolved pores constituted the main reservoir space of the 4^(th) member. It's partially filled with asphalt and quartz, without any dolosparite fillings in the pores and caves. The pore connectivity is good. Most of the 4^(th) member reservoirs had medium-low porosity and low permeability, and, locally, medium-high porosity and medium permeability. Affected by the development of mound-shoal complex and heterogeneous dissolution, the platform margin along Ningqiang, Guangyuan, Jiange and Langzhong is the most favorable region for reservoir development. Deep buried Dengying Formation in the guangyuan and langzhong areas should be the most important hydrocarbon target for the future exploration.
文摘Described in detail in this paper are the geochemical charederistics of thesandstone-type urboum deposits in northern Sichuan Province. Favoable and unfavor-able conditions for the enrichment of uranium are explored on the basis of the elementalabundances and ratios of U, Th and K determined by gamma-ray spectroscopy Gamma-ray spectroscopic (U, Th and K) and XRF analyses (As, Ba) are helpful to distinguishU-bearing light-colorea sandstones from U-barren light-colored ones and red sandstones(red claystone) from light-colored sandstones. Therefore, the favorable target area forprospecting the sandstone-type uranium deposits can be defined in northern SichuanProvince.
基金supported by the PetroChina Innovation Foundation (No.2018D-5007-0105)National Natural Science Foundation of China (42102193)Open Experiment Funding of Southwest Petroleum University (2021KSZ02008 and 2021KSP02031).
文摘At the end of Early Cambrian time,the Sichuan basin(South China)was located in a wide carbonate platform,with hundreds of meters of carbonate deposited.The Longwangmiao Formation carbonate in Sichuan basin is partially to completely dolomitized,displaying a mottled texture in the northern area of the exposure.The mottled dolomitic limestone developed parallel to bedding,with shape irregular boundaries with limestone that has not been dolomitized.The mottled dolomite is composed of powder crystalline and finely crystalline dolomite,while the matrix limestone is composed of micritic calcite.the isotopic composition of mottled dolomite(δ^(13)C=+0.29‰PDB,δ^(18)O=1.15‰PDB)is similar to that of micrite calcite(δ^(13)C=0.49‰PDB,δ^(18)O=1.45‰PDB).Both isotopic values and trace element data indicate that the dolomitized fluid is originated from sea water.Some beds contain gypsum pseudomorphs and mud cracks,indicating a shallow and evaporative environment with local high salinity during deposition.Dolomitization likely took place early,in part as a result of sea water salinity concentration.Trace fossils thalassinoides horizontalis,thalassinoides callianassa and planolites developed in the Longwangmiao Formation,and the sharp edges of mottled dolomite are similar to these trace fossils.The beds are intensely bioturbated.In the burrow network,the sediments and burrow fill were coarse and loose with little clay,and it is interpreted here as being easier to be dolomitized than the surrounding sediments.Partial dolomitization is thus interpreted to have occurred in the burrow system,and the degree of dolomitization was related to the degree of bioturbation,which is controlled by the trace-making creatures.