Based on the stable isotopic analysis of more than 1000 samples of planktonic and benthic foraminifers from ODP Site 1148 in the northern South China Sea (SCS), the oxygen isotope stratigraphy has been applied to the ...Based on the stable isotopic analysis of more than 1000 samples of planktonic and benthic foraminifers from ODP Site 1148 in the northern South China Sea (SCS), the oxygen isotope stratigraphy has been applied to the last 3 million years for the first time in the SCS. Furthermore, the paleoceanographic changes in the northern SCS during the last 6 million years have been unraveled. The benthic foraminiferal δ180 record shows that before ~3.1 Ma the SCS was much more influenced by the warm intermediate water of the Pacific. The remarkable decrease in the deepwater temperature of the SCS during the period of 3.1-2.5 Ma demonstrates the formation of the Northern Hemisphere ice-sheet. However, the several sea surface temperature (SST) reductions during the early and middle Pliocene, reflected by the planktonic foraminiferal δ18O, might be related to the ice-sheet growth in the Antarctic region. Only those stepwise and irreversible SST reductions during the period of ~2.2-0.9 Ma could be related to the formation and growth of the Northern Hemisphere ice-sheet.展开更多
Aeolian dust, a primary terrigenous component of ocean sediments, has been widely used to reconstruct the paleoclimatic evolution because its transported distance, grain size and concentration are sensitive to climate...Aeolian dust, a primary terrigenous component of ocean sediments, has been widely used to reconstruct the paleoclimatic evolution because its transported distance, grain size and concentration are sensitive to climate changes. To further characterize the aeolian dust, the deposits at site Ocean Drilling Program (ODP) 882A in northwestern Pacific Ocean are divided into four grain-size fractions (<8, 8-16, 16-64, >64 μm) using the gravitative differentiation method. Detailed rock magnetism results show that magnetite and hematite are dominant magnetic minerals for the dust components. In addition, the aeolian dust (<8 μm) represented by the concentration of magnetic minerals increases sharply at 2.73 Ma, which corresponds to the onset of major glaciation in the Northern Hemisphere. In contrast, the ice-rafted detritus (IRD) (>64 μm) contributes little to the magnetic enhancement of the sediments at 2.73 Ma. These new results greatly improve our understanding of paleoenvironmental evolution during late Pliocene-early Pleistocene in this area.展开更多
基金the National Natural Science Foundation of China (Grant No. 49999560) and the State key Basic Research and Development Plan of China (Grant No. G2000078503).
文摘Based on the stable isotopic analysis of more than 1000 samples of planktonic and benthic foraminifers from ODP Site 1148 in the northern South China Sea (SCS), the oxygen isotope stratigraphy has been applied to the last 3 million years for the first time in the SCS. Furthermore, the paleoceanographic changes in the northern SCS during the last 6 million years have been unraveled. The benthic foraminiferal δ180 record shows that before ~3.1 Ma the SCS was much more influenced by the warm intermediate water of the Pacific. The remarkable decrease in the deepwater temperature of the SCS during the period of 3.1-2.5 Ma demonstrates the formation of the Northern Hemisphere ice-sheet. However, the several sea surface temperature (SST) reductions during the early and middle Pliocene, reflected by the planktonic foraminiferal δ18O, might be related to the ice-sheet growth in the Antarctic region. Only those stepwise and irreversible SST reductions during the period of ~2.2-0.9 Ma could be related to the formation and growth of the Northern Hemisphere ice-sheet.
基金supported by National Natural Science Foundation of China (Grants Nos. 40974036, 41025013 and 40821091)the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Aeolian dust, a primary terrigenous component of ocean sediments, has been widely used to reconstruct the paleoclimatic evolution because its transported distance, grain size and concentration are sensitive to climate changes. To further characterize the aeolian dust, the deposits at site Ocean Drilling Program (ODP) 882A in northwestern Pacific Ocean are divided into four grain-size fractions (<8, 8-16, 16-64, >64 μm) using the gravitative differentiation method. Detailed rock magnetism results show that magnetite and hematite are dominant magnetic minerals for the dust components. In addition, the aeolian dust (<8 μm) represented by the concentration of magnetic minerals increases sharply at 2.73 Ma, which corresponds to the onset of major glaciation in the Northern Hemisphere. In contrast, the ice-rafted detritus (IRD) (>64 μm) contributes little to the magnetic enhancement of the sediments at 2.73 Ma. These new results greatly improve our understanding of paleoenvironmental evolution during late Pliocene-early Pleistocene in this area.