The Hala'alat Mountains are located at the transition between the West Junggar and the Junggar Basin. In this area, rocks are Carboniferous, with younger strata above them that have been identified through well data ...The Hala'alat Mountains are located at the transition between the West Junggar and the Junggar Basin. In this area, rocks are Carboniferous, with younger strata above them that have been identified through well data and high-resolution 3D seismic profiles. Among these strata, seven unconformities are observed and distributed at the bases of: the Permian Jiamuhe Formation, the Permian Fengcheng Formation, the Triassic Baikouquan Formation, the Jurassic Badaowan Formation, the Jurassic Xishanyao Formation, the Cretaceous Tugulu Group and the Paleogene. On the basis of balanced sections, these unconformities are determined to have been formed by erosion of uplifts or rotated fault blocks primarily during the Mesozoic and Cenozoic. In conjunction with the currently understood tectonic background of the sur- rounding areas, the following conclusions are proposed: the unconformities at the bases of the Permian Jiamuhe and Fengcheng formations are most likely related to the subduction and closure of the Junggar Ocean during the late Carboniferous-early Permian; the unconformities at the bases of the Triassic Baikoucluan and Jurassic Badaowan formations are closely related to the late Permian Triassic Durbut sinistral slip fault; the unconformities at the bases of the middle Jurassic Xisbanyao Formation and Cretaceous Tugulu Group may be related to reactivation of the Durbut dextral slip fault in the late Jurassic -early Cretaceous, and the unconformity that gives rise to the widely observed absence of the upper Cretaceous in the northern Junggar Basin may be closely related to large scale uplift. All of these geological phenomena indicate that the West Junggar was not calm in the Mesozoic and Cenozoic and that it experienced at least four periods of tectonic movement.展开更多
ABSTRACT: The widespread Neoproterozoic magmatism along the Yangtze block carries critical in- formation for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze ...ABSTRACT: The widespread Neoproterozoic magmatism along the Yangtze block carries critical in- formation for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze block, the Hannan (汉南) intrusive complex includes the Wudumen (五堵门), Erliba (二里坝) and Zushidian (祖师殿) granitoids. Using LA-ICP-MS U-Pb zircon dating method, the Wudumen and Erliba granitoids yielded magma crystallization ages of 785±4 and 778±3 Ma, respectively. Samples from these three granitoids show variable SiO2 contents ranging from 58.8% to 72.6%. They are characterized by enrichment of Al2O3(14.97%-17.87%), Na2O(3.80%-5.33%) and Sr (504ppm-741 ppm), and depletion of Y (〈19 ppm) and HREE (e.g., Yb〈1.6 ppm), resulting in high Sr/Y (29-161) and (La/Yb)N (7.3-27.8) ratios. The geochemical features of the granitoids are comparable with those of adakite. The granitoids have zircon εHdt) values of +3.65 to +10.05, whole-rock εNd(t) values of -0.09 to +2.98 and whole-rock initial ^87Sr/^86Sr ratios of 0.7034-0.7039, indicating that their magma was derived from a juvenile crustal source. Together with geochemical and Hf-Sr-Nd isotopic compositions, it is suggested that the granitoids formed in island-arc setting and originated from partial melting of a subducted oceanic slab. The results support a model that the Yangtze block was surrounded by ocean and arc magmatism in its northern and northwestern margins in Neoproterozoic.展开更多
Deep hot mantle upwelling is widely revealed around the Qiongdongnan Basin on the northwestern South China Sea margin. However, when and how it influenced the hyper-extended basin is unclear.To resolve these issues, a...Deep hot mantle upwelling is widely revealed around the Qiongdongnan Basin on the northwestern South China Sea margin. However, when and how it influenced the hyper-extended basin is unclear.To resolve these issues, a detailed analysis of the Cenozoic time-varying residual subsidence derived by subtracting the predicted subsidence from the backstripped subsidence was performed along a new seismic reflection line in the western Qiongdongnan Basin. For the first time, a method is proposed to calculate the time-varying strain rates constrained by the faults growth rates, on basis of which, the predicted basement subsidence is obtained with a basin-and lithosphere-scale coupled finite extension model, and the backstripped subsidence is accurately recovered with a modified technique of backstripping to eliminate the effects of later episodes of rifting on earlier sediment thickness. Results show no residual subsidence in 45–28.4 Ma. But after 28.4 Ma, negative residual subsidence occurred, reached and remained ca. -1000 m during 23–11.6 Ma, and reduced dramatically after 11.6 Ma. In the syn-rift period(45–23 Ma), the residual subsidence is ca. -1000 m, however in the post-rift period(23–0 Ma),it is positive of ca. 300 to 1300 m increasing southeastwards. These results suggest that the syn-rift subsidence deficit commenced at 28.4 Ma, while the post-rift excess subsidence occurred after 11.6 Ma.Combined with previous studies, it is inferred that the opposite residual subsidence in the syn-and post-rift periods with similar large wavelengths(>10^(2) km) and km-scale amplitudes are the results of transient dynamic topography induced by deep mantle upwelling beneath the central QDNB, which started to influence the basin at ca. 28.4 Ma, continued into the Middle Miocene, and decayed at ca.11.6 Ma. The initial mantle upwelling with significant dynamic uplift had precipitated considerable continental extension and faulting in the Late Oligocene(28.4–23 Ma). After ca. 11.6 Ma, strong mantle upwelling probably occurred beneath the Leizhou–Hainan area to form vast basaltic lava flow.展开更多
Formed on top of the Gulf of Cadiz, the Al Idrissi mud volcano is the shallowest and largest mud volcano in the El Arraiche mud volcano field of the northwestern Moroccan margin. The development and morphology of mud ...Formed on top of the Gulf of Cadiz, the Al Idrissi mud volcano is the shallowest and largest mud volcano in the El Arraiche mud volcano field of the northwestern Moroccan margin. The development and morphology of mud volcanoes from the El Arraiche mud volcanoes group have been studied at a large scale. However, the time interval related to their formation period still needs to be better understood. In this regard, we interpreted and analyzed the seismic facies from the 2D reflection data of the GEOMARGEN-1 campaign, which took place in 2011. The aim was to identify the seismic sequences and draw the Al Idrissi mud volcano system to determine the formation period of the Al Idriss mud volcano. And as a result, the Al Idrissi mud volcano system is made of both buried and superficial bicone and was identified along with the Upper Tortonian to Messinian-Upper Pliocene facies. As the initial mud volcano extrusive edifice, the buried bicone was formed in the Late-Messinian to Early-Pliocene period. However, the superficial bicone, as the final extrusive edifice, was included in the Late Pliocene. In this case, the timing interval between the buried and superficial bicone is equivalent to the Late-Messinian to Upper-Pliocene period. Therefore, the latter corresponds to the Al Idrissi mud volcano formation period.展开更多
基金financially supported by the National Science and Technology Major Project(Grant No.2011ZX05008-001)the National Natural Science Foundation of China(Grant No.40739906)the Chinese State 973 Project(Grant No.2011CB201100)
文摘The Hala'alat Mountains are located at the transition between the West Junggar and the Junggar Basin. In this area, rocks are Carboniferous, with younger strata above them that have been identified through well data and high-resolution 3D seismic profiles. Among these strata, seven unconformities are observed and distributed at the bases of: the Permian Jiamuhe Formation, the Permian Fengcheng Formation, the Triassic Baikouquan Formation, the Jurassic Badaowan Formation, the Jurassic Xishanyao Formation, the Cretaceous Tugulu Group and the Paleogene. On the basis of balanced sections, these unconformities are determined to have been formed by erosion of uplifts or rotated fault blocks primarily during the Mesozoic and Cenozoic. In conjunction with the currently understood tectonic background of the sur- rounding areas, the following conclusions are proposed: the unconformities at the bases of the Permian Jiamuhe and Fengcheng formations are most likely related to the subduction and closure of the Junggar Ocean during the late Carboniferous-early Permian; the unconformities at the bases of the Triassic Baikoucluan and Jurassic Badaowan formations are closely related to the late Permian Triassic Durbut sinistral slip fault; the unconformities at the bases of the middle Jurassic Xisbanyao Formation and Cretaceous Tugulu Group may be related to reactivation of the Durbut dextral slip fault in the late Jurassic -early Cretaceous, and the unconformity that gives rise to the widely observed absence of the upper Cretaceous in the northern Junggar Basin may be closely related to large scale uplift. All of these geological phenomena indicate that the West Junggar was not calm in the Mesozoic and Cenozoic and that it experienced at least four periods of tectonic movement.
基金supported by the National Natural Science Foundation of China (Nos. 40773019 and 40821061)the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China (No. B07039)
文摘ABSTRACT: The widespread Neoproterozoic magmatism along the Yangtze block carries critical in- formation for understanding the Neoproterozoic evolution of the Yangtze block. In the northwestern margin of the Yangtze block, the Hannan (汉南) intrusive complex includes the Wudumen (五堵门), Erliba (二里坝) and Zushidian (祖师殿) granitoids. Using LA-ICP-MS U-Pb zircon dating method, the Wudumen and Erliba granitoids yielded magma crystallization ages of 785±4 and 778±3 Ma, respectively. Samples from these three granitoids show variable SiO2 contents ranging from 58.8% to 72.6%. They are characterized by enrichment of Al2O3(14.97%-17.87%), Na2O(3.80%-5.33%) and Sr (504ppm-741 ppm), and depletion of Y (〈19 ppm) and HREE (e.g., Yb〈1.6 ppm), resulting in high Sr/Y (29-161) and (La/Yb)N (7.3-27.8) ratios. The geochemical features of the granitoids are comparable with those of adakite. The granitoids have zircon εHdt) values of +3.65 to +10.05, whole-rock εNd(t) values of -0.09 to +2.98 and whole-rock initial ^87Sr/^86Sr ratios of 0.7034-0.7039, indicating that their magma was derived from a juvenile crustal source. Together with geochemical and Hf-Sr-Nd isotopic compositions, it is suggested that the granitoids formed in island-arc setting and originated from partial melting of a subducted oceanic slab. The results support a model that the Yangtze block was surrounded by ocean and arc magmatism in its northern and northwestern margins in Neoproterozoic.
基金This research was supported by the Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology(NO.MMRKF201805)by CAS Youth Innovation Promotion Association+5 种基金by Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0205)by Guangzhou Municipal Science and technology program(NO.201904010285)by K.C.Wong Education Foundation(NO.GJTD2018-13)by Key Laboratory of Marine Mineral Resources,Ministry of Natural Resources(NO.KLMMR-2018-B-06)by Innovation Academy of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences(NO.ISEE2018PY02)by National Natural Science Foundation of China(NO.42076077)。
文摘Deep hot mantle upwelling is widely revealed around the Qiongdongnan Basin on the northwestern South China Sea margin. However, when and how it influenced the hyper-extended basin is unclear.To resolve these issues, a detailed analysis of the Cenozoic time-varying residual subsidence derived by subtracting the predicted subsidence from the backstripped subsidence was performed along a new seismic reflection line in the western Qiongdongnan Basin. For the first time, a method is proposed to calculate the time-varying strain rates constrained by the faults growth rates, on basis of which, the predicted basement subsidence is obtained with a basin-and lithosphere-scale coupled finite extension model, and the backstripped subsidence is accurately recovered with a modified technique of backstripping to eliminate the effects of later episodes of rifting on earlier sediment thickness. Results show no residual subsidence in 45–28.4 Ma. But after 28.4 Ma, negative residual subsidence occurred, reached and remained ca. -1000 m during 23–11.6 Ma, and reduced dramatically after 11.6 Ma. In the syn-rift period(45–23 Ma), the residual subsidence is ca. -1000 m, however in the post-rift period(23–0 Ma),it is positive of ca. 300 to 1300 m increasing southeastwards. These results suggest that the syn-rift subsidence deficit commenced at 28.4 Ma, while the post-rift excess subsidence occurred after 11.6 Ma.Combined with previous studies, it is inferred that the opposite residual subsidence in the syn-and post-rift periods with similar large wavelengths(>10^(2) km) and km-scale amplitudes are the results of transient dynamic topography induced by deep mantle upwelling beneath the central QDNB, which started to influence the basin at ca. 28.4 Ma, continued into the Middle Miocene, and decayed at ca.11.6 Ma. The initial mantle upwelling with significant dynamic uplift had precipitated considerable continental extension and faulting in the Late Oligocene(28.4–23 Ma). After ca. 11.6 Ma, strong mantle upwelling probably occurred beneath the Leizhou–Hainan area to form vast basaltic lava flow.
文摘Formed on top of the Gulf of Cadiz, the Al Idrissi mud volcano is the shallowest and largest mud volcano in the El Arraiche mud volcano field of the northwestern Moroccan margin. The development and morphology of mud volcanoes from the El Arraiche mud volcanoes group have been studied at a large scale. However, the time interval related to their formation period still needs to be better understood. In this regard, we interpreted and analyzed the seismic facies from the 2D reflection data of the GEOMARGEN-1 campaign, which took place in 2011. The aim was to identify the seismic sequences and draw the Al Idrissi mud volcano system to determine the formation period of the Al Idriss mud volcano. And as a result, the Al Idrissi mud volcano system is made of both buried and superficial bicone and was identified along with the Upper Tortonian to Messinian-Upper Pliocene facies. As the initial mud volcano extrusive edifice, the buried bicone was formed in the Late-Messinian to Early-Pliocene period. However, the superficial bicone, as the final extrusive edifice, was included in the Late Pliocene. In this case, the timing interval between the buried and superficial bicone is equivalent to the Late-Messinian to Upper-Pliocene period. Therefore, the latter corresponds to the Al Idrissi mud volcano formation period.