The article is devoted to the discussion of the possibilities of approbation of one of the probabilistic methods of verification of evaluation works-the minimax method or the method of establishing the minimum risk of...The article is devoted to the discussion of the possibilities of approbation of one of the probabilistic methods of verification of evaluation works-the minimax method or the method of establishing the minimum risk of making erroneous diagnoses of the instability of the planetary boundary layer of air.Within the framework of this study,the task of probabilistic forecasting of diagnostic parameters and their combinations,leading in their totality to the formation of an unstable state of the planetary boundary layer of the atmosphere,was carried out.It is this state that,as shown by previous studies,a priori contribution to the development of a number of weather phenomena dangerous for society(squalls,hail,heavy rains,etc.).The results of applying the minimax method made it possible to identify a number of parameters,such as the intensity of circulation,the activity of the Earth’s magnetosphere,and the components of the geostrophic wind velocity,the combination of which led to the development of instability.In the future,it is possible to further expand the number of diagnosed parameters to identify more sensitive elements.In this sense,the minimax method,the usefulness of which is shown in this study,can be considered as one of the preparatory steps for the subsequent more detailed method for forecasting individual hazardous weather phenomena.展开更多
It is important to improve the speed of a ship,the friction resistance can be reduced by injection air at the bottom of a ship when the ship is running on the water.As the first part of the studying project,here numer...It is important to improve the speed of a ship,the friction resistance can be reduced by injection air at the bottom of a ship when the ship is running on the water.As the first part of the studying project,here numerical simulation study method,boundary condition and governing equations are presented.It is easy to study complicated problems from simple conditions,so the program concerning boundary layer condition is compiled to solve the problem.Here the spectral method is introduced,and the results are tested by Dorod’s results.展开更多
The Meyerhof and Hanna′s(M-H) method to estimate the ultimate bearing capacity of layered foundations was improved. The experimental results of the load tests in Tianjin New Harbor were compared with predictions with...The Meyerhof and Hanna′s(M-H) method to estimate the ultimate bearing capacity of layered foundations was improved. The experimental results of the load tests in Tianjin New Harbor were compared with predictions with the method recommended by the code for the foundations of harbor engineering, i.e. Hansen′s method and the improved M-H method. The results of the comparisons implied that the code and the improved M-H method could give a better prediction.展开更多
Third order nonlinear ordinary differential equation, subject to appropriate boundary conditions, arising in fluid mechanics is solved exactly using more suggestive schemes- Dirichlet series and method of stretching v...Third order nonlinear ordinary differential equation, subject to appropriate boundary conditions, arising in fluid mechanics is solved exactly using more suggestive schemes- Dirichlet series and method of stretching variables. These methods have advantages over pure numerical methods in obtaining derived quantities accurately for various values of the parameters involved at a stretch and are valid in a much larger domain compared with classical numerical schemes.展开更多
The Preston's method is considered as one of the most commonly employed methods to measure the wall shear stress. However, it is only possible to determine the wall shear stress from measured pressure differences of ...The Preston's method is considered as one of the most commonly employed methods to measure the wall shear stress. However, it is only possible to determine the wall shear stress from measured pressure differences of the Preston tube and undisturbed static pressure, combined with calibration curves, which depend on the Preston tube diameter, fluid density, and viscosity. Since its invention, no significant advancement in theory has been made, and calibration curves proposed by Preston, Patel and Bechert are still in use. In the present study, a need to measure surface shear stress over a circular cylinder prompted us to develop our original Preston tube system. The developed system has been calibrated by measuring the wall shear stress in the fully developed turbulent flow regime in a circular pipe. The present results generally confirm the previously reported calibration curves. A slight modification of the coefficients in the calibration equation shows further improvement.展开更多
This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-s...This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-space.It is shown that the convergence rate is t-(α/4) as t →∞ provided that the initial perturbation lies in H α 1 for α 〈 α(q):= 3 +(2/q),where q is the degeneracy exponent of the flux function.Our analysis is based on the space-time weighted energy method combined with a Hardy type inequality with the best possible constant introduced in [1]展开更多
Novel exact solutions of one-dimensional transient dynamic piezoelectric problems for thickness polarized layers and disks, or length polarized rods, are obtained. The solutions are derived using a time-domain Green’...Novel exact solutions of one-dimensional transient dynamic piezoelectric problems for thickness polarized layers and disks, or length polarized rods, are obtained. The solutions are derived using a time-domain Green’s function method that leads to an exact analytical recursive procedure which is applicable for a wide variety of boundary conditions including nonlinear cases. A nonlinear damper boundary condition is considered in more detail. The corresponding nonlinear relationship between stresses and velocities at a current time moment is used in the recursive procedure. In addition to the exact recursive procedure that is effective for calculations, some new practically important explicit exact solutions are presented. Several examples of the time behavior of the output electric potential difference are given to illustrate the effectiveness of the proposed exact approach.展开更多
We consider the anisotropic uniaxial formulation of the perfectly matched layer(UPML)model for Maxwell’s equations in the time domain.We present and analyze a mixed finite element method for the discretization of the...We consider the anisotropic uniaxial formulation of the perfectly matched layer(UPML)model for Maxwell’s equations in the time domain.We present and analyze a mixed finite element method for the discretization of the UPML in the time domain to simulate wave propagation on unbounded domains in two dimensions.On rectangles the spatial discretization uses bilinear finite elements for the electric field and the lowest order Raviart-Thomas divergence conforming elements for the magnetic field.We use a centered finite difference method for the time discretization.We compare the finite element technique presented to the finite difference time domain method(FDTD)via a numerical reflection coefficient analysis.We derive the numerical reflection coefficient for the case of a semi-infinite PML layer to show consistency between the numerical and continuous models,and in the case of a finite PML to study the effects of terminating the absorbing layer.Finally,we demonstrate the effectiveness of the mixed finite element scheme for the UPML by a numerical example and provide comparisons with the split field PML discretized by the FDTD method.In conclusion,we observe that the mixed finite element scheme for the UPML model has absorbing properties that are comparable to the FDTD method.展开更多
文摘The article is devoted to the discussion of the possibilities of approbation of one of the probabilistic methods of verification of evaluation works-the minimax method or the method of establishing the minimum risk of making erroneous diagnoses of the instability of the planetary boundary layer of air.Within the framework of this study,the task of probabilistic forecasting of diagnostic parameters and their combinations,leading in their totality to the formation of an unstable state of the planetary boundary layer of the atmosphere,was carried out.It is this state that,as shown by previous studies,a priori contribution to the development of a number of weather phenomena dangerous for society(squalls,hail,heavy rains,etc.).The results of applying the minimax method made it possible to identify a number of parameters,such as the intensity of circulation,the activity of the Earth’s magnetosphere,and the components of the geostrophic wind velocity,the combination of which led to the development of instability.In the future,it is possible to further expand the number of diagnosed parameters to identify more sensitive elements.In this sense,the minimax method,the usefulness of which is shown in this study,can be considered as one of the preparatory steps for the subsequent more detailed method for forecasting individual hazardous weather phenomena.
文摘It is important to improve the speed of a ship,the friction resistance can be reduced by injection air at the bottom of a ship when the ship is running on the water.As the first part of the studying project,here numerical simulation study method,boundary condition and governing equations are presented.It is easy to study complicated problems from simple conditions,so the program concerning boundary layer condition is compiled to solve the problem.Here the spectral method is introduced,and the results are tested by Dorod’s results.
文摘The Meyerhof and Hanna′s(M-H) method to estimate the ultimate bearing capacity of layered foundations was improved. The experimental results of the load tests in Tianjin New Harbor were compared with predictions with the method recommended by the code for the foundations of harbor engineering, i.e. Hansen′s method and the improved M-H method. The results of the comparisons implied that the code and the improved M-H method could give a better prediction.
文摘Third order nonlinear ordinary differential equation, subject to appropriate boundary conditions, arising in fluid mechanics is solved exactly using more suggestive schemes- Dirichlet series and method of stretching variables. These methods have advantages over pure numerical methods in obtaining derived quantities accurately for various values of the parameters involved at a stretch and are valid in a much larger domain compared with classical numerical schemes.
文摘The Preston's method is considered as one of the most commonly employed methods to measure the wall shear stress. However, it is only possible to determine the wall shear stress from measured pressure differences of the Preston tube and undisturbed static pressure, combined with calibration curves, which depend on the Preston tube diameter, fluid density, and viscosity. Since its invention, no significant advancement in theory has been made, and calibration curves proposed by Preston, Patel and Bechert are still in use. In the present study, a need to measure surface shear stress over a circular cylinder prompted us to develop our original Preston tube system. The developed system has been calibrated by measuring the wall shear stress in the fully developed turbulent flow regime in a circular pipe. The present results generally confirm the previously reported calibration curves. A slight modification of the coefficients in the calibration equation shows further improvement.
基金supported by the "Fundamental Research Funds for the Central Universities"the National Natural Science Foundation of China (10871151)
文摘This paper is concerned with the convergence rates of the global solutions of the generalized Benjamin-Bona-Mahony-Burgers(BBM-Burgers) equation to the corresponding degenerate boundary layer solutions in the half-space.It is shown that the convergence rate is t-(α/4) as t →∞ provided that the initial perturbation lies in H α 1 for α 〈 α(q):= 3 +(2/q),where q is the degeneracy exponent of the flux function.Our analysis is based on the space-time weighted energy method combined with a Hardy type inequality with the best possible constant introduced in [1]
文摘Novel exact solutions of one-dimensional transient dynamic piezoelectric problems for thickness polarized layers and disks, or length polarized rods, are obtained. The solutions are derived using a time-domain Green’s function method that leads to an exact analytical recursive procedure which is applicable for a wide variety of boundary conditions including nonlinear cases. A nonlinear damper boundary condition is considered in more detail. The corresponding nonlinear relationship between stresses and velocities at a current time moment is used in the recursive procedure. In addition to the exact recursive procedure that is effective for calculations, some new practically important explicit exact solutions are presented. Several examples of the time behavior of the output electric potential difference are given to illustrate the effectiveness of the proposed exact approach.
基金supported in part by Los Alamos National Laboratory,an affirmative action/equal opportunity employer which is operated by the University of California for the United States Department of Energy under contract Nos W-7405-ENG-36,03891-001-99-4G,74837-001-0349,and/or 86192-001-0449in part by the U.S.Air Force Office of Scientific Research under grants AFOSR F49620-01-1-0026 and AFOSR FA9550-04-1-0220.
文摘We consider the anisotropic uniaxial formulation of the perfectly matched layer(UPML)model for Maxwell’s equations in the time domain.We present and analyze a mixed finite element method for the discretization of the UPML in the time domain to simulate wave propagation on unbounded domains in two dimensions.On rectangles the spatial discretization uses bilinear finite elements for the electric field and the lowest order Raviart-Thomas divergence conforming elements for the magnetic field.We use a centered finite difference method for the time discretization.We compare the finite element technique presented to the finite difference time domain method(FDTD)via a numerical reflection coefficient analysis.We derive the numerical reflection coefficient for the case of a semi-infinite PML layer to show consistency between the numerical and continuous models,and in the case of a finite PML to study the effects of terminating the absorbing layer.Finally,we demonstrate the effectiveness of the mixed finite element scheme for the UPML by a numerical example and provide comparisons with the split field PML discretized by the FDTD method.In conclusion,we observe that the mixed finite element scheme for the UPML model has absorbing properties that are comparable to the FDTD method.