期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Novel Adder Circuits Based On Quantum-Dot Cellular Automata (QCA)
1
作者 Firdous Ahmad Ghulam Mohiuddin Bhat Peer Zahoor Ahmad 《Circuits and Systems》 2014年第6期142-152,共11页
Quantum-dot cellular automaton (QCA) is a novel nanotechnology that provides a very different computation platform than traditional CMOS, in which polarization of electrons indicates the digital information. This pape... Quantum-dot cellular automaton (QCA) is a novel nanotechnology that provides a very different computation platform than traditional CMOS, in which polarization of electrons indicates the digital information. This paper demonstrates designing combinational circuits based on quantum-dot cellular automata (QCA) nanotechnology, which offers a way to implement logic and all interconnections with only one homogeneous layer of cells. In this paper, the authors have proposed a novel design of XOR gate. This model proves designing capabilities of combinational circuits that are compatible with QCA gates within nano-scale. Novel adder circuits such as half adders, full adders, which avoid the fore, mentioned noise paths, crossovers by careful clocking organization, have been proposed. Experiment results show that the performance of proposed designs is more efficient than conventional designs. The modular layouts are verified with the freely available QCA Designer tool. 展开更多
关键词 novel adder circuits based on quantum-dot cellular automata (qca)
下载PDF
Introducing scalable 1-bit full adders for designing quantum-dot cellular automata arithmetic circuits 被引量:1
2
作者 Hamideh KHAJEHNASIR-JAHROMI Pooya TORKZADEH Massoud DOUSTI 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第8期1264-1276,共13页
Designing logic circuits using complementary metal-oxide-semiconductor(CMOS)technology at the nano scale has been faced with various challenges recently.Undesirable leakage currents,the short-effect channel,and high e... Designing logic circuits using complementary metal-oxide-semiconductor(CMOS)technology at the nano scale has been faced with various challenges recently.Undesirable leakage currents,the short-effect channel,and high energy dissipation are some of the concerns.Quantum-dot cellular automata(QCA)represent an appropriate alternative for possible CMOS replacement in the future because it consumes an insignificant amount of energy compared to the standard CMOS.The key point of designing arithmetic circuits is based on the structure of a 1-bit full adder.A low-complexity full adder block is beneficial for developing various intricate structures.This paper represents scalable 1-bit QCA full adder structures based on cell interaction.Our proposed full adders encompass preference aspects of QCA design,such as a low number of cells used,low latency,and small area occupation.Also,the proposed structures have been expanded to larger circuits,including a 4-bit ripple carry adder(RCA),a 4-bit ripple borrow subtractor(RBS),an add/sub circuit,and a 2-bit array multiplier.All designs were simulated and verified using QCA Designer-E version 2.2.This tool can estimate the energy dissipation as well as evaluate the performance of the circuits.Simulation results showed that the proposed designs are efficient in complexity,area,latency,cost,and energy dissipation. 展开更多
关键词 quantum-dot cellular automata(qca) Full adder Ripple carry adder(RCA) Add/sub circuit MULTIPLIER
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部