It is particularly important to comprehensively assess the biotoxicity variation of industrial wastewater along the treatment process for ensuring the water environment security.However,intensive studies on the biotox...It is particularly important to comprehensively assess the biotoxicity variation of industrial wastewater along the treatment process for ensuring the water environment security.However,intensive studies on the biotoxicity reduction of industrial wastewater are still limited.In this study,the toxic organics removal and biotoxicity reduction of coal chemical wastewater(CCW)along a novel full-scale treatment process based on the pretreatment process-anaerobic process-biological enhanced(BE)process-anoxic/oxic(A/O)process-advanced treatment process was evaluated.This process performed great removal efficiency of COD,total phenol,NH_(4)^(+)-N and total nitrogen.And the biotoxicity variation along the treatment units was analyzed from the perspective of acute biotoxicity,genotixicity and oxidative damage.The results indicated that the effluent of pretreatment process presented relatively high acute biotoxicity to Tetrahymena thermophila.But the acute biotoxicity was significantly reduced in BE-A/O process.And the genotoxicity and oxidative damage to Tetrahymena thermophila were significantly decreased after advanced treatment.The polar organics in CCW were identified as the main biotoxicity contributors.Phenols were positively correlated with acute biotoxicity,while the nitrogenous heterocyclic compounds and polycyclic aromatic hydrocarbons were positively correlated with genotoxicity.Although the biotoxicity was effectively reduced in the novel full-scale treatment process,the effluent still performed potential biotoxicity,which need to be further explored in order to reduce environmental risk.展开更多
The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individuall...The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individually and recommendations for further study are listed in the final section.展开更多
With the support by the National Natural Science Foundation of China,the research team led by Prof.Hou Yu(侯宇)and Prof.Yang Huagui(杨化桂)at the Key Laboratory for Ultrafine Materials of Ministry of Education,School ...With the support by the National Natural Science Foundation of China,the research team led by Prof.Hou Yu(侯宇)and Prof.Yang Huagui(杨化桂)at the Key Laboratory for Ultrafine Materials of Ministry of Education,School of Materials Science and Engineering,East China University of Science展开更多
基金supported by the Natural Science Foundation of Shandong Province,China(No.ZR2021QE227)the Natural Science Foundation of Shandong Province,China(No.ZR2021QE272)+1 种基金the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.ES202120)the Taishan Scholars Program of Shandong Province,China(No.tsqn201812091)。
文摘It is particularly important to comprehensively assess the biotoxicity variation of industrial wastewater along the treatment process for ensuring the water environment security.However,intensive studies on the biotoxicity reduction of industrial wastewater are still limited.In this study,the toxic organics removal and biotoxicity reduction of coal chemical wastewater(CCW)along a novel full-scale treatment process based on the pretreatment process-anaerobic process-biological enhanced(BE)process-anoxic/oxic(A/O)process-advanced treatment process was evaluated.This process performed great removal efficiency of COD,total phenol,NH_(4)^(+)-N and total nitrogen.And the biotoxicity variation along the treatment units was analyzed from the perspective of acute biotoxicity,genotixicity and oxidative damage.The results indicated that the effluent of pretreatment process presented relatively high acute biotoxicity to Tetrahymena thermophila.But the acute biotoxicity was significantly reduced in BE-A/O process.And the genotoxicity and oxidative damage to Tetrahymena thermophila were significantly decreased after advanced treatment.The polar organics in CCW were identified as the main biotoxicity contributors.Phenols were positively correlated with acute biotoxicity,while the nitrogenous heterocyclic compounds and polycyclic aromatic hydrocarbons were positively correlated with genotoxicity.Although the biotoxicity was effectively reduced in the novel full-scale treatment process,the effluent still performed potential biotoxicity,which need to be further explored in order to reduce environmental risk.
基金the Chinese Foundation Research ProjectionMagnesium Elektron Ltd. and the Manchester Materials Science Center of University of Manchester.
文摘The current research and development of magnesium alloys is summarized. Several aspects of magnesium alloys are described: cast Mg alloy, wrought Mg alloy, and novel processing. The subjects are discussed individually and recommendations for further study are listed in the final section.
文摘With the support by the National Natural Science Foundation of China,the research team led by Prof.Hou Yu(侯宇)and Prof.Yang Huagui(杨化桂)at the Key Laboratory for Ultrafine Materials of Ministry of Education,School of Materials Science and Engineering,East China University of Science