We study here effects of nozzle layout on the droplet ejection of a micro atomizer, which was fabricated with the arrayed nozzles by the MEMS technology and actuated by a piezoelectric disc. A theoretical model was fi...We study here effects of nozzle layout on the droplet ejection of a micro atomizer, which was fabricated with the arrayed nozzles by the MEMS technology and actuated by a piezoelectric disc. A theoretical model was first built for this piezoelectric-liquid-structure coupling system to characterize the acoustic wave propagation in the liquid chamber, which determined the droplet formation out of nozzles. The modal analysis was carried out numerically to predict resonant frequencies and simulate the corresponding pressure wave field. By comparing the amplitude contours of pressure wave on the liquid-solid interface at nozzle inlets with the designed nozzle layout, behaviors of the device under different vibration modes can be predicted. Experimentally, an impedance analyzer was used to measure the resonant frequencies of the system. Three types of atomizers with different nozzle layouts were fabricated for measuring the effect of nozzle distribution on the ejection performance. The visualization experiment of droplet generation was carried out and volume flow rates of these devices were measured. The good agreement between the experiment and the prediction proved that only the increase of nozzles may not enhance the droplet generation and a design of nozzle distribution from a view-point of frequency is necessary for a resonant related atomizer.展开更多
Aiming at the problem of air-cooled condenser output limit, a spray humidification system was presented to reduce the inlet air temperature. The pressure atomizing nozzle TF8 was chosen for inlet air spray cooling, an...Aiming at the problem of air-cooled condenser output limit, a spray humidification system was presented to reduce the inlet air temperature. The pressure atomizing nozzle TF8 was chosen for inlet air spray cooling, and the spray cooling experiment with different layouts of nozzles were conducted. Through heat and mass transfer analysis, the cooling effect fitting correlation was acquired with evaporative cooling being the major cooling mechanism. The experimental results under different nozzle layouts show that when the product of dry ball and wet ball temperature difference and spray rate is smaller than 75 ~C-m3/h, opening the TF8 nozzles in row 1 and row 2 (row distance is 500 mm) has better cooling effect than those in row 1 and row 3 (row distance is 1 000 mm), while when the product is larger than 75 ~C'm3/h, opening the TF8 nozzles in row 1 and row 3 is superior in cooling effect to those in row 1 and row 2.展开更多
基金the National Natural Science Foundation of China(50405001).
文摘We study here effects of nozzle layout on the droplet ejection of a micro atomizer, which was fabricated with the arrayed nozzles by the MEMS technology and actuated by a piezoelectric disc. A theoretical model was first built for this piezoelectric-liquid-structure coupling system to characterize the acoustic wave propagation in the liquid chamber, which determined the droplet formation out of nozzles. The modal analysis was carried out numerically to predict resonant frequencies and simulate the corresponding pressure wave field. By comparing the amplitude contours of pressure wave on the liquid-solid interface at nozzle inlets with the designed nozzle layout, behaviors of the device under different vibration modes can be predicted. Experimentally, an impedance analyzer was used to measure the resonant frequencies of the system. Three types of atomizers with different nozzle layouts were fabricated for measuring the effect of nozzle distribution on the ejection performance. The visualization experiment of droplet generation was carried out and volume flow rates of these devices were measured. The good agreement between the experiment and the prediction proved that only the increase of nozzles may not enhance the droplet generation and a design of nozzle distribution from a view-point of frequency is necessary for a resonant related atomizer.
基金National Key Technologies R&D Program in the 12th Five-Year Plan of China(No. 2011BAJ08B09)
文摘Aiming at the problem of air-cooled condenser output limit, a spray humidification system was presented to reduce the inlet air temperature. The pressure atomizing nozzle TF8 was chosen for inlet air spray cooling, and the spray cooling experiment with different layouts of nozzles were conducted. Through heat and mass transfer analysis, the cooling effect fitting correlation was acquired with evaporative cooling being the major cooling mechanism. The experimental results under different nozzle layouts show that when the product of dry ball and wet ball temperature difference and spray rate is smaller than 75 ~C-m3/h, opening the TF8 nozzles in row 1 and row 2 (row distance is 500 mm) has better cooling effect than those in row 1 and row 3 (row distance is 1 000 mm), while when the product is larger than 75 ~C'm3/h, opening the TF8 nozzles in row 1 and row 3 is superior in cooling effect to those in row 1 and row 2.