Nowadays,more and more attention has been paid to improve the performance of the nozzle flapper servo valve.As a core part of nozzle flapper servo valve,the armature assembly is affected by electromagnetic force,jet f...Nowadays,more and more attention has been paid to improve the performance of the nozzle flapper servo valve.As a core part of nozzle flapper servo valve,the armature assembly is affected by electromagnetic force,jet force and feedback force at the same time.Due to the complex structure of the pilot stage flow field and the high jet pressure,the prediction of the jet force has always been difficult in modeling the transient motion of the servo valve.Whereupon,a numerical simulation method based on the flow-solid interaction(FSI)is applied to observe the variation of the jet force when the flapper is moving.Different parameters are employed to seek a suitable numerical simulation model which can balance the accuracy and computational cost.By comparing with the experiment results,the effectiveness of numerical simulation method in predicting the variation of the jet force and cavitation is verified.By this numerical simulation model,the distribution of flow field and the force on the flapper predicted by the moving and fixed flapper are compared.The results show that more dynamic details are achieved by the transient simulation.By analyzing the numerical simulation results of different inlet pressures and flapper vibration frequencies,the relationship between the movement of the flapper,the flow field distribution,the jet force and the inlet pressure is established,which provides a theoretical basis for the subsequent modeling of the armature assembly.展开更多
In this paper, taking two degrees of freedom on the armature–flapper assembly into account, a seventh-order model is deduced and proposed for the dynamic response of a two-stage electro-hydraulic servo valve from non...In this paper, taking two degrees of freedom on the armature–flapper assembly into account, a seventh-order model is deduced and proposed for the dynamic response of a two-stage electro-hydraulic servo valve from nonlinear equations. These deductions are based on fundamental laws of electromagnetism, fluid, and general mechanics. The coefficients of the proposed seventhorder model are derived in terms of servo valve physical parameters and fluid properties explicitly.For validating the results of the proposed model, an AMESim simulation model based on physical laws and the existing low-order models validated by other researchers through experiments are used to compare with the seventh-order model. The results show that the seventh-order model can reflect the physical behavior of the servo valve more explicitly than the existing low-order models and it could provide guidance more easily for a linear control design approach and sensitivity analysis than the AMESim simulation model.展开更多
基金Supported by the National Natural Science Foundation of China(51675119)。
文摘Nowadays,more and more attention has been paid to improve the performance of the nozzle flapper servo valve.As a core part of nozzle flapper servo valve,the armature assembly is affected by electromagnetic force,jet force and feedback force at the same time.Due to the complex structure of the pilot stage flow field and the high jet pressure,the prediction of the jet force has always been difficult in modeling the transient motion of the servo valve.Whereupon,a numerical simulation method based on the flow-solid interaction(FSI)is applied to observe the variation of the jet force when the flapper is moving.Different parameters are employed to seek a suitable numerical simulation model which can balance the accuracy and computational cost.By comparing with the experiment results,the effectiveness of numerical simulation method in predicting the variation of the jet force and cavitation is verified.By this numerical simulation model,the distribution of flow field and the force on the flapper predicted by the moving and fixed flapper are compared.The results show that more dynamic details are achieved by the transient simulation.By analyzing the numerical simulation results of different inlet pressures and flapper vibration frequencies,the relationship between the movement of the flapper,the flow field distribution,the jet force and the inlet pressure is established,which provides a theoretical basis for the subsequent modeling of the armature assembly.
基金the National Natural Science Foundation of China (No. 50975055) for financial support
文摘In this paper, taking two degrees of freedom on the armature–flapper assembly into account, a seventh-order model is deduced and proposed for the dynamic response of a two-stage electro-hydraulic servo valve from nonlinear equations. These deductions are based on fundamental laws of electromagnetism, fluid, and general mechanics. The coefficients of the proposed seventhorder model are derived in terms of servo valve physical parameters and fluid properties explicitly.For validating the results of the proposed model, an AMESim simulation model based on physical laws and the existing low-order models validated by other researchers through experiments are used to compare with the seventh-order model. The results show that the seventh-order model can reflect the physical behavior of the servo valve more explicitly than the existing low-order models and it could provide guidance more easily for a linear control design approach and sensitivity analysis than the AMESim simulation model.