On the basis of the data of biological and nonbiological factors collected respectively from 1989 to 1990 and from 1995 to 1996 in the waters nearby the Qinshan Nuclear Power Station, the ecological environment and wa...On the basis of the data of biological and nonbiological factors collected respectively from 1989 to 1990 and from 1995 to 1996 in the waters nearby the Qinshan Nuclear Power Station, the ecological environment and water quality of the waters are analyzed and assessed in the paper. The results show: (a) the surveyed area has the typical ecological characteristics of high tidal range estuary, rich nutrients and low biological productivity, (b) tide, runoff and offshore seawater intrusion are the key factors which result in seasonal and annual changes of various biological and non-biological factors, (c) the risking of seawater eutrophication index is resulted from enormous amount of the discharges of industrial and domestic sewage, (d) because the survey area is located in a high tidal-range estuary, thermal effluent from cooling system does not induce significant temperature changes, ( e) the first stage project of Qinshan nuclear power station has no notable impacts on the ecological environment in展开更多
A plan of surveillance monitoring Qinshan Nuclear Power Plant (QNPP) has been implemented since 1992, the objective of which is to establish the database of environmental radiation information around QNPP, and to dete...A plan of surveillance monitoring Qinshan Nuclear Power Plant (QNPP) has been implemented since 1992, the objective of which is to establish the database of environmental radiation information around QNPP, and to detect any unplanned discharge of radioactive materials from QNPP. This paper presents the monitoring results for radionuclide concentrations in the environmental matrices before and after QNPP operation. The radionuclide con- centrations in vegetation, food, atmosphere, soil and littoral soil samples have been determined. After operation of QNPP, the mean values of 137Cs, Sr and H in water are 0.6, 4.9 mBq/L and 1.7 Bq/L, respectively; the mean values 90 3 of137Cs in soil and littoral soil are 3.5 and 2.7 Bq/kg, respectively; the mean values of137Cs in rice, green cabbage, meat, mullet, milk and tea are 0.033, 0.039, 0.081, 0.069, 0.018 and 0.62 Bq/kg, respectively; the mean values of 90 Sr in rice, green cabbage and tea are 0.081, 0.315 and 4.1 Bq/kg, respectively; gross β activity in fallout is 0.9 Bq·m-2·d-1. Compared with the data before QNPP’s operation, no significant difference has heen observed in the radioactivity of137Cs, Sr, H and the gross β activity in ambient environmental matrices from 1992 to 2001, and 90 3 there are only some fluctuations within the range of background.展开更多
The radioactivity level of the ambient environment of Anren Bone-coal Power Station (BCPS) was investigated systematically. The γ radiation dose rate level in the environment, the content of 238U and 226Ra in the amb...The radioactivity level of the ambient environment of Anren Bone-coal Power Station (BCPS) was investigated systematically. The γ radiation dose rate level in the environment, the content of 238U and 226Ra in the ambient soil and the farmland in the direction of downwind, the concentrations of 238U. 232Th. 226Ra 40K and 222Rn as well as α potential energy in air, and the concentrations of natural U and Th in effluent are all higher than the corresponding values of the reference site. The additional annual effective dose equivalent to the residents living in the houses made of bone-coal cinder brick is 2.7 mSv.展开更多
Environmental characteristics and phytoplankton community structure were investigated in two aquaculture areas in Dapeng Cove of Daya Bay, South China Sea, between April 2005 and June 2006. Phytoplankton abundance ran...Environmental characteristics and phytoplankton community structure were investigated in two aquaculture areas in Dapeng Cove of Daya Bay, South China Sea, between April 2005 and June 2006. Phytoplankton abundance ranged between 5.0 and 8877.5 cells/mL, with an average of 751.8 cells/mL. The seasonal cycle of phytoplankton were demonstrated by frequent oscillations, with recurrent high abundances from late spring to autumn and a peak stage in late winter. Diatoms were the predominant phytoplankton group, accounting for 93.21% of the total abundance. The next most abundant group was the dinoflagellates, which made up only 1.24% of total abundance. High concentrations of Alexandrium tamarense (Lebour) Balech with a maximum of 603.0 cells/mL were firstly recorded in this area known for high rates of paralytic shellfish poisoning (PSP) contamination. Temperatures and salinities were within the suitable values for the growth of phytoplankton, and were important in phytoplankton seasonal fluctuations. The operation of the Daya Bay Nuclear Power Station (DNPS) exerts influences on the phytoplankton community and resulted in the high abundances of toxic dinoflagellate species during the winter months. Dissolved inorganic nitrogen (DIN) and dissolved silicate (DSi) were sufficient, and rarely limited for the growth of phytoplankton. Dissolved inorganic phosphorus (DIP) was the most necessary element for phytoplankton growth. The enriched environments accelerated the growth of small diatoms, and made for the shift in predominant species from large diatom Rhizosolenia spp. to chain-forming diatoms such as Skeletonema costatum, Pseudo-nitzschia spp. and Thalassiosira subtilis.展开更多
文摘On the basis of the data of biological and nonbiological factors collected respectively from 1989 to 1990 and from 1995 to 1996 in the waters nearby the Qinshan Nuclear Power Station, the ecological environment and water quality of the waters are analyzed and assessed in the paper. The results show: (a) the surveyed area has the typical ecological characteristics of high tidal range estuary, rich nutrients and low biological productivity, (b) tide, runoff and offshore seawater intrusion are the key factors which result in seasonal and annual changes of various biological and non-biological factors, (c) the risking of seawater eutrophication index is resulted from enormous amount of the discharges of industrial and domestic sewage, (d) because the survey area is located in a high tidal-range estuary, thermal effluent from cooling system does not induce significant temperature changes, ( e) the first stage project of Qinshan nuclear power station has no notable impacts on the ecological environment in
文摘A plan of surveillance monitoring Qinshan Nuclear Power Plant (QNPP) has been implemented since 1992, the objective of which is to establish the database of environmental radiation information around QNPP, and to detect any unplanned discharge of radioactive materials from QNPP. This paper presents the monitoring results for radionuclide concentrations in the environmental matrices before and after QNPP operation. The radionuclide con- centrations in vegetation, food, atmosphere, soil and littoral soil samples have been determined. After operation of QNPP, the mean values of 137Cs, Sr and H in water are 0.6, 4.9 mBq/L and 1.7 Bq/L, respectively; the mean values 90 3 of137Cs in soil and littoral soil are 3.5 and 2.7 Bq/kg, respectively; the mean values of137Cs in rice, green cabbage, meat, mullet, milk and tea are 0.033, 0.039, 0.081, 0.069, 0.018 and 0.62 Bq/kg, respectively; the mean values of 90 Sr in rice, green cabbage and tea are 0.081, 0.315 and 4.1 Bq/kg, respectively; gross β activity in fallout is 0.9 Bq·m-2·d-1. Compared with the data before QNPP’s operation, no significant difference has heen observed in the radioactivity of137Cs, Sr, H and the gross β activity in ambient environmental matrices from 1992 to 2001, and 90 3 there are only some fluctuations within the range of background.
文摘The radioactivity level of the ambient environment of Anren Bone-coal Power Station (BCPS) was investigated systematically. The γ radiation dose rate level in the environment, the content of 238U and 226Ra in the ambient soil and the farmland in the direction of downwind, the concentrations of 238U. 232Th. 226Ra 40K and 222Rn as well as α potential energy in air, and the concentrations of natural U and Th in effluent are all higher than the corresponding values of the reference site. The additional annual effective dose equivalent to the residents living in the houses made of bone-coal cinder brick is 2.7 mSv.
基金supported by the National Natural Science Foundation of China(No.40673062,40773063, U0633006)
文摘Environmental characteristics and phytoplankton community structure were investigated in two aquaculture areas in Dapeng Cove of Daya Bay, South China Sea, between April 2005 and June 2006. Phytoplankton abundance ranged between 5.0 and 8877.5 cells/mL, with an average of 751.8 cells/mL. The seasonal cycle of phytoplankton were demonstrated by frequent oscillations, with recurrent high abundances from late spring to autumn and a peak stage in late winter. Diatoms were the predominant phytoplankton group, accounting for 93.21% of the total abundance. The next most abundant group was the dinoflagellates, which made up only 1.24% of total abundance. High concentrations of Alexandrium tamarense (Lebour) Balech with a maximum of 603.0 cells/mL were firstly recorded in this area known for high rates of paralytic shellfish poisoning (PSP) contamination. Temperatures and salinities were within the suitable values for the growth of phytoplankton, and were important in phytoplankton seasonal fluctuations. The operation of the Daya Bay Nuclear Power Station (DNPS) exerts influences on the phytoplankton community and resulted in the high abundances of toxic dinoflagellate species during the winter months. Dissolved inorganic nitrogen (DIN) and dissolved silicate (DSi) were sufficient, and rarely limited for the growth of phytoplankton. Dissolved inorganic phosphorus (DIP) was the most necessary element for phytoplankton growth. The enriched environments accelerated the growth of small diatoms, and made for the shift in predominant species from large diatom Rhizosolenia spp. to chain-forming diatoms such as Skeletonema costatum, Pseudo-nitzschia spp. and Thalassiosira subtilis.