In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial meth...In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.展开更多
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair...Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.展开更多
In the GCM we study some properties of meson as the Goldstone bosons in a nuclear matter with finite density. Using the effective action in a nuclear matter, we calculate the decay constant and mass as functions of ...In the GCM we study some properties of meson as the Goldstone bosons in a nuclear matter with finite density. Using the effective action in a nuclear matter, we calculate the decay constant and mass as functions of the chemical potential. The relation between the chemical potential and the density of a nuclear matter is firstly given here. We find that and monotonously decrease as nuclear matter density increases. The result is consistent with the usual assumption that the chiral symmetry is gradually restored as the density of a nuclear matter increases.展开更多
Ericson formula represents the first formula, which was suggested to describe the partial level density (PLD) formula in pre-equilibrium region of the nuclear reactions. Then a number of corrections were added to this...Ericson formula represents the first formula, which was suggested to describe the partial level density (PLD) formula in pre-equilibrium region of the nuclear reactions. Then a number of corrections were added to this formula in order to make it more suitable to physical meaning. In this paper, there are two aims to be done: the first aim is to study the correspondence between one and two-components formulae in Ericson, Pauli, and pairing corrections;the second aim is to compare and study the results of Comprehensive formula, which contents with all corrections, with Ericson, Pauli, and pairing formulae. The Comprehensive formula was suggested to simulate the reality. To achieve these aims the 56Fe and 90Zr nuclei were chosen and the results showed that the difference between one and two-components formulae was too small which can be neglected. Furthermore, the results strongly recommended that for cross section calculations of the nuclear reaction, one must use Comprehensive formula rather than Pauli formula.展开更多
The equation of state of symmetric nuclear matter is studied with an equivalent mass model.The equivalent mass of a nucleon has been expanded to order 4 in density.We first determine the first-order expansion coeffici...The equation of state of symmetric nuclear matter is studied with an equivalent mass model.The equivalent mass of a nucleon has been expanded to order 4 in density.We first determine the first-order expansion coefficient in the quantum hadron dynamics,then calculate the coefficients of the second to fourth order for the given binding energy and incompressibility at the normal nuclear saturation density.It is found that there appears a density isomeric state if the incompressibility is smaller than a critical value.The model dependence of the conclusion has also been checked by varying the first-order coefficient.展开更多
Nuclear level density(NLD) is a characteristic property of many-body quantum mechanical systems.NLDs are of special importance to make statistical calculations in reactor studies and various theoretical and experiment...Nuclear level density(NLD) is a characteristic property of many-body quantum mechanical systems.NLDs are of special importance to make statistical calculations in reactor studies and various theoretical and experimental nuclear physics and engineering applications.In this study,we have investigated a set of particle states in distinct rotational and vibrational bands to calculate nuclear level density parameters and the NLDs of accessible states of some deformed Dy radionuclides using a collective model approach,which included different excitation bands of the observed nuclear spectra.The method used assumes equidistant spacing of collective coupled state bands of the considered nuclei.The results of the calculated NLD have been compared with the experimental and compiled data obtained by the Oslo group,shell model Monte Carlo,Hartree-Fock-Bogoliubov + combinatorial approach,Bardeen-Cooper-Schrieffer approach and are in a good agreement.展开更多
The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basi...The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basis set.Contrary to the localized behavior observed in the ground and the doubly excited 2p^(23)Pe states,for this state our results identify that while the behavior of the inner electron increasingly resembles that of a hydrogen-like atomic system,the outer electron in the excited state exhibits diffused hydrogen-like character and becomes perpendicular to the inner electron as nuclear charge Z approaches Z_(c).This study provides insights into the electronic structure and stability of the two-electron system in the vicinity of the critical nuclear charge.展开更多
The level density parameter and the back shift energy E1 are determined for nuclei with A-values across the whole periodic table from fits to complete level schemes at low excitation energy near the neutron binding en...The level density parameter and the back shift energy E1 are determined for nuclei with A-values across the whole periodic table from fits to complete level schemes at low excitation energy near the neutron binding energies. We find that the energy back shift EI shows complicated behavior and depends on the type of the nucleus, even-even, odd mass, and odd-odd. The spin cut-off factor has also been investigated for nuclei mentioned above. The results are compared with the previous results and different experimental data on level densities.展开更多
Nuclear magnetic resonance (NMR) is one of the most powerful tools to explore new quantum states of condensed matter induced by high magnetic fields at a microscopic level. High magnetic field enhances the intensity...Nuclear magnetic resonance (NMR) is one of the most powerful tools to explore new quantum states of condensed matter induced by high magnetic fields at a microscopic level. High magnetic field enhances the intensity of the NMR signal, and more importantly, can induce novel phenomena. In this article, examples are given on the field-induced charge density wave (CDW) in high-To superconductors and on the studies of quantum spin liquids. We provide a brief introduction to the high magnetic field NMR platform, the station 4 of the Synergetic Extreme Condition User Facility (SECUF), being built at Huairou, Beijing.展开更多
Objective To investigate the molecular mechanism of atherosclerosis that related to age. Methods Immunohistochemistry staining and Western blot were adopted to determine the nuclear translocation of nuclear factor-kap...Objective To investigate the molecular mechanism of atherosclerosis that related to age. Methods Immunohistochemistry staining and Western blot were adopted to determine the nuclear translocation of nuclear factor-kappa B (NF-κB) and expression of platelet-derived growth factor B (PDGF-B) in smooth muscle cells (SMCs) co-cultured with low density lipoprotein (LDL), oxidized LDL (ox-LDL), and ox-LDL+high density lipoprotein (HDL) originated from rats of 2 and 10 months old respectively. Fat stain was used to identify the lipid intake in SMCs. Results The optimal stimulation time of ox-LDL to SMCs was 12 hours. NF-κB intensity increased in most nuclei of SMCs that originated from rats of either 2 or 10 months old co-cultured with ox-LDL. The intensity of NF-κB and the amount of intracellular lipid taken in SMCs were more obvious in cells from 10-month-old rats than from the younger ones. Change of PDGF-B expression in SMCs was not remarkable in each group of rats. Conclusions The 10-month-old rats are more susceptive to ox-LDL than 2-month-old rats in activating nuclear transloca- tion of NF-κB. Maybe this is one of the important reasons contributing to the difference between the older and younger rats on the initiation and development of atherosclerosis lesion. Expression of PDGF-B is not associated with the activity of nuclear translocation of NF-κB.展开更多
The existing researches of miniature magnetic circuits focus on the single-sided permanent magnetic circuits and the Halbach permanent magnetic circuits. In the single-sided permanent magnetic circuits, the magnetic f...The existing researches of miniature magnetic circuits focus on the single-sided permanent magnetic circuits and the Halbach permanent magnetic circuits. In the single-sided permanent magnetic circuits, the magnetic flux density is always very low in the work region. In the Halbach permanent magnetic circuits, there are always great difficulties in the manufacturing and assembly process. The static magnetic flux density required for nuclear magnetic resonance(NMR) chip is analyzed based on the signal noise ratio(SNR) calculation model, and then a miniature C-shaped permanent magnetic circuit is designed as the required magnetic flux density. Based on Kirchhoff’s law and magnetic flux refraction principle, the concept of a single shimming ring is proposed to improve the performance of the designed magnetic circuit. Using the finite element method, a comparative calculation is conducted. The calculation results demonstrate that the magnetic circuit improved with a single shimming has higher magnetic flux density and better magnetic field homogeneity than the one improved with no shimming ring or double shimming rings. The proposed magnetic circuit is manufactured and its experimental test platform is also built. The magnetic flux density measured in the work region is 0.7 T, which is well coincided with the theoretical design. The spatial variation of the magnetic field is within the range of the instrument error. At last, the temperature dependence of the magnetic flux density produced by the proposed magnetic circuit is investigated through both theoretical analysis and experimental study, and a linear functional model is obtained. The proposed research is crucial for solving the problem in the application of NMR-chip under different environmental temperatures.展开更多
The thermodynamic properties of charged particles,such as the energy density,pressure,entropy density,particle density,and squared speed of sound at the kinetic freeze-out in the Au+Au collisions from the relativistic...The thermodynamic properties of charged particles,such as the energy density,pressure,entropy density,particle density,and squared speed of sound at the kinetic freeze-out in the Au+Au collisions from the relativistic heavy ion collider (RHIC)beam energy scan program √S_(NN) and in the Cu+Cu collisions at √S_(NN),200 GeV are studied using the thermodynamically consistent Tsallis distribution.The energy density,pressure,and particle density decrease monotonically with the collision energy for the same collision centrality;These properties also decrease monotonically from the central to peripheral collisions at the same collision energy.While the scaled energy densityε∕T^(4) and scaled entropy density s∕T^(3) demonstrate the opposite trend with the collision energy for the same collision centrality.There is a correlation betweenε∕T^(4) and s∕T^(3) at the same centrality.In addition,the squared speed of sound was calculated to determine that all the collision energies share nearly the same value at different collision centralities.展开更多
Betavoltaic nuclear batteries offer a promising alternative energy source that harnesses the power of beta particles emitted by radioisotopes.To satisfy the power demands of microelectromechanical systems(MEMS),3D str...Betavoltaic nuclear batteries offer a promising alternative energy source that harnesses the power of beta particles emitted by radioisotopes.To satisfy the power demands of microelectromechanical systems(MEMS),3D structures have been proposed as a potential solution.Accordingly,this paper introduces a novel 3D^(63)Ni–SiC-based P^(+)PNN^(+)structure with a multi-groove design,avoiding the need for PN junctions on the inner surface,and thus reducing leakage current and power losses.Monte Carlo simulations were performed considering the fully coupled physical model to extend the electron–hole pair generation rate to a 3D structure,enabling the efficient design and development of betavoltaic batteries with complex 3D structures.As a result,the proposed model produces the significantly higher maximum output power density of 19.74μW/cm^(2) and corresponding short-circuit current,open-circuit voltage,and conversion efficiency of 8.57μA/cm^(2),2.45 V,and4.58%,respectively,compared with conventional planar batteries.From analysis of the carrier transport and collection characteristics using the COMSOL Multiphysics code,we provide deep insights regarding power increase,and elucidate the discrepancies between the ideal and simulated performances of betavoltaic batteries.Our work offers a promising approach for the design and optimization of high-output betavoltaic nuclear batteries with a unique 3D design,and serves as a valuable reference for future device fabrication.展开更多
Recently an algorithm that acts the variational principle directly to a coherent-pair condensate (VDPC) has been proposed. This algorithm can avoid time-consuming projection while maintaining particle number conservat...Recently an algorithm that acts the variational principle directly to a coherent-pair condensate (VDPC) has been proposed. This algorithm can avoid time-consuming projection while maintaining particle number conservation. Quickly computation of many-pair density matrix (MPDM) is one of the keys to improve the computational efficiency of VDPC algorithm. In this work, we propose a scheme that limits the energy range of block particles to the vicinity of the Fermi surface, which reduces the time complexity of computing the MPDM without losing physical details. The results show that by appropriately limiting the energy range, we can greatly reduce the number of matrix elements that need to be computed, and reducing the time required for the computation.展开更多
In this study, density measurements were observed by using gamma transmission technique. Co-60 gamma emitter was used as gamma radioisotope source. Regarding the gamma-ray transmission method, initial radiation intens...In this study, density measurements were observed by using gamma transmission technique. Co-60 gamma emitter was used as gamma radioisotope source. Regarding the gamma-ray transmission method, initial radiation intensity (I0) and radiation intensity (I) determined experimentally and [I/I0] rates were calculated and then density of materials could be determined by using Beer-Lambert Equation. Experimental application performed on widespread industrial metals or metal alloys e.g. lead, copper and steel, brass. With this study, it is shown that gamma transmission technique can be used for density measurements.展开更多
Purpose: To evaluate the performance of a phacoemulsification system in terms of effective (EPT) and total phaco time (TPT) using 20G and 21G phaco tips. Methods: Retrospective comparative study including 143 consecut...Purpose: To evaluate the performance of a phacoemulsification system in terms of effective (EPT) and total phaco time (TPT) using 20G and 21G phaco tips. Methods: Retrospective comparative study including 143 consecutive cataractous eyes undergoing phacoemulsification cataract surgery with the Visalis 500 device. The 20G and 21G phaco tips were used in 46 and 97 eyes, respectively. The EPT and TPT values were evaluated. Results: Median TPT was 11.25 s and 17.50 s in the 20G and 21G groups, respectively (p = 0.0011). Median EPT values were 3.15 s and 5.00 s in the 20G and 21G groups, respectively (p = 0.0032). TPT and EPT were significantly lower in 3/3+ cataract eyes compared to 4/4+ using both tips (p < 0.001). Conclusions: The Visalis 500 allows cataract surgery with reduced TPT and EPT, even in hard cataracts. The use of the 20G phaco tip provides an additional benefit in terms of reduction of phaco time.展开更多
β decay is one of the most fundamental and thoroughly studied nuclear decay. Surprisingly, the β decay rates were found to have a periodic time variability [1]. However, others argued that there is no evidence for s...β decay is one of the most fundamental and thoroughly studied nuclear decay. Surprisingly, the β decay rates were found to have a periodic time variability [1]. However, others argued that there is no evidence for such cyclic deviation from the exponential first order kinetics decay law [2]. Here we propose that the β decay is a pseudo-first order exchange reaction triggered by uddũexotic mesons and propose a QCD gas theory. In analogy to the atmospheric gas density, the proposed QCD gas density drops with elevation from the sun. Accordingly, we propose that the β decay rate periodic variability is due to the pseudo-first order exchange reaction kinetics and the QCD gas atmospheric density drop. The proposed QCD gas may be a possible candidate for Einstein’s general theory of relativity ether [3]. Our main results are the derived formulas for calculating the effective mass of the QCD gas and the cosmology perfect fluid equation of state dimensionless parameter, based on the measured ratio of the β decay rates at the earth trajectory aphelion and perihelion dates. .展开更多
As a library of nuclear basic data and nuclear model parameters for nuclear model calculations,Chinese Evaluated Nuclear Parameter Library(CENPL)at Chinese Nuclear Data Center(CNDC)consists of six sub-libraries and is...As a library of nuclear basic data and nuclear model parameters for nuclear model calculations,Chinese Evaluated Nuclear Parameter Library(CENPL)at Chinese Nuclear Data Center(CNDC)consists of six sub-libraries and is still under development.Most of the data fries for this library have beenset up.These sub-libraries have been used to retrieve the data required for nuclear model calculations andother purposes.展开更多
基金supported by the Natural Science Foundation of Jilin Province(No.20220101017JC)National Natural Science Foundation of China(No.11675063)Key Laboratory of Nuclear Data Foundation(JCKY2020201C157).
文摘In this study,a microscopic method for calculating the nuclear level density(NLD)based on the covariant density functional theory(CDFT)is developed.The particle-hole state density is calculated by a combinatorial method using single-particle level schemes obtained from the CDFT,and the level densities are then obtained by considering collective effects such as vibration and rotation.Our results are compared with those of other NLD models,including phenomenological,microstatisti-cal and nonrelativistic Hartree–Fock–Bogoliubov combinatorial models.This comparison suggests that the general trends among these models are essentially the same,except for some deviations among the different NLD models.In addition,the NLDs obtained using the CDFT combinatorial method with normalization are compared with experimental data,including the observed cumulative number of levels at low excitation energies and the measured NLDs.The CDFT combinatorial method yields results that are in reasonable agreement with the existing experimental data.
基金supported by the National Key R&D Program of China(No.2022YFA1602000)National Natural Science Foundation of China(Nos.12275081,U2067205,11790325,and U1732138)the Continuous-support Basic Scientific Research Project。
文摘Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data.
文摘In the GCM we study some properties of meson as the Goldstone bosons in a nuclear matter with finite density. Using the effective action in a nuclear matter, we calculate the decay constant and mass as functions of the chemical potential. The relation between the chemical potential and the density of a nuclear matter is firstly given here. We find that and monotonously decrease as nuclear matter density increases. The result is consistent with the usual assumption that the chiral symmetry is gradually restored as the density of a nuclear matter increases.
文摘Ericson formula represents the first formula, which was suggested to describe the partial level density (PLD) formula in pre-equilibrium region of the nuclear reactions. Then a number of corrections were added to this formula in order to make it more suitable to physical meaning. In this paper, there are two aims to be done: the first aim is to study the correspondence between one and two-components formulae in Ericson, Pauli, and pairing corrections;the second aim is to compare and study the results of Comprehensive formula, which contents with all corrections, with Ericson, Pauli, and pairing formulae. The Comprehensive formula was suggested to simulate the reality. To achieve these aims the 56Fe and 90Zr nuclei were chosen and the results showed that the difference between one and two-components formulae was too small which can be neglected. Furthermore, the results strongly recommended that for cross section calculations of the nuclear reaction, one must use Comprehensive formula rather than Pauli formula.
基金Supported by National Natural Science Foundation of China(NSFC) Projects (Nos.11135011 and 11045006)the key project from Chinese Academy of Sciences(No.12A0A0012)
文摘The equation of state of symmetric nuclear matter is studied with an equivalent mass model.The equivalent mass of a nucleon has been expanded to order 4 in density.We first determine the first-order expansion coefficient in the quantum hadron dynamics,then calculate the coefficients of the second to fourth order for the given binding energy and incompressibility at the normal nuclear saturation density.It is found that there appears a density isomeric state if the incompressibility is smaller than a critical value.The model dependence of the conclusion has also been checked by varying the first-order coefficient.
文摘Nuclear level density(NLD) is a characteristic property of many-body quantum mechanical systems.NLDs are of special importance to make statistical calculations in reactor studies and various theoretical and experimental nuclear physics and engineering applications.In this study,we have investigated a set of particle states in distinct rotational and vibrational bands to calculate nuclear level density parameters and the NLDs of accessible states of some deformed Dy radionuclides using a collective model approach,which included different excitation bands of the observed nuclear spectra.The method used assumes equidistant spacing of collective coupled state bands of the considered nuclei.The results of the calculated NLD have been compared with the experimental and compiled data obtained by the Oslo group,shell model Monte Carlo,Hartree-Fock-Bogoliubov + combinatorial approach,Bardeen-Cooper-Schrieffer approach and are in a good agreement.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074295,12304271,and 12104420).
文摘The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basis set.Contrary to the localized behavior observed in the ground and the doubly excited 2p^(23)Pe states,for this state our results identify that while the behavior of the inner electron increasingly resembles that of a hydrogen-like atomic system,the outer electron in the excited state exhibits diffused hydrogen-like character and becomes perpendicular to the inner electron as nuclear charge Z approaches Z_(c).This study provides insights into the electronic structure and stability of the two-electron system in the vicinity of the critical nuclear charge.
文摘The level density parameter and the back shift energy E1 are determined for nuclei with A-values across the whole periodic table from fits to complete level schemes at low excitation energy near the neutron binding energies. We find that the energy back shift EI shows complicated behavior and depends on the type of the nucleus, even-even, odd mass, and odd-odd. The spin cut-off factor has also been investigated for nuclei mentioned above. The results are compared with the previous results and different experimental data on level densities.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07020200)the National Key Research and Development Program of China(Grant Nos.2016YFA0300502 and 2015CB921304)the National Natural Science Foundation of China(Grant No.11634015)
文摘Nuclear magnetic resonance (NMR) is one of the most powerful tools to explore new quantum states of condensed matter induced by high magnetic fields at a microscopic level. High magnetic field enhances the intensity of the NMR signal, and more importantly, can induce novel phenomena. In this article, examples are given on the field-induced charge density wave (CDW) in high-To superconductors and on the studies of quantum spin liquids. We provide a brief introduction to the high magnetic field NMR platform, the station 4 of the Synergetic Extreme Condition User Facility (SECUF), being built at Huairou, Beijing.
文摘Objective To investigate the molecular mechanism of atherosclerosis that related to age. Methods Immunohistochemistry staining and Western blot were adopted to determine the nuclear translocation of nuclear factor-kappa B (NF-κB) and expression of platelet-derived growth factor B (PDGF-B) in smooth muscle cells (SMCs) co-cultured with low density lipoprotein (LDL), oxidized LDL (ox-LDL), and ox-LDL+high density lipoprotein (HDL) originated from rats of 2 and 10 months old respectively. Fat stain was used to identify the lipid intake in SMCs. Results The optimal stimulation time of ox-LDL to SMCs was 12 hours. NF-κB intensity increased in most nuclei of SMCs that originated from rats of either 2 or 10 months old co-cultured with ox-LDL. The intensity of NF-κB and the amount of intracellular lipid taken in SMCs were more obvious in cells from 10-month-old rats than from the younger ones. Change of PDGF-B expression in SMCs was not remarkable in each group of rats. Conclusions The 10-month-old rats are more susceptive to ox-LDL than 2-month-old rats in activating nuclear transloca- tion of NF-κB. Maybe this is one of the important reasons contributing to the difference between the older and younger rats on the initiation and development of atherosclerosis lesion. Expression of PDGF-B is not associated with the activity of nuclear translocation of NF-κB.
基金supported by National Natural Science Foundation of China (Grant No. 51175083)Jiangsu Provincial University Industry Cooperation Innovation Foundation-Prospective Study of China (Grant No.BY2011135)+1 种基金Scientific Research Foundation of Graduate School of Southeast University, China (Grant No. YBJJ1134)Important Scientific Research Guide Foundation of Southeast University, China
文摘The existing researches of miniature magnetic circuits focus on the single-sided permanent magnetic circuits and the Halbach permanent magnetic circuits. In the single-sided permanent magnetic circuits, the magnetic flux density is always very low in the work region. In the Halbach permanent magnetic circuits, there are always great difficulties in the manufacturing and assembly process. The static magnetic flux density required for nuclear magnetic resonance(NMR) chip is analyzed based on the signal noise ratio(SNR) calculation model, and then a miniature C-shaped permanent magnetic circuit is designed as the required magnetic flux density. Based on Kirchhoff’s law and magnetic flux refraction principle, the concept of a single shimming ring is proposed to improve the performance of the designed magnetic circuit. Using the finite element method, a comparative calculation is conducted. The calculation results demonstrate that the magnetic circuit improved with a single shimming has higher magnetic flux density and better magnetic field homogeneity than the one improved with no shimming ring or double shimming rings. The proposed magnetic circuit is manufactured and its experimental test platform is also built. The magnetic flux density measured in the work region is 0.7 T, which is well coincided with the theoretical design. The spatial variation of the magnetic field is within the range of the instrument error. At last, the temperature dependence of the magnetic flux density produced by the proposed magnetic circuit is investigated through both theoretical analysis and experimental study, and a linear functional model is obtained. The proposed research is crucial for solving the problem in the application of NMR-chip under different environmental temperatures.
基金supported in part by the National Natural Science Foundation of China (Nos. 11905120 and 11947416)the Natural Science Foundation of the Sichuan Province (No. 2023NSFSC1322)+1 种基金the United States Department of Energy (#DE-FG02-93ER40773)the NNSA (No. DENA0003841 (CENTAUR))。
文摘The thermodynamic properties of charged particles,such as the energy density,pressure,entropy density,particle density,and squared speed of sound at the kinetic freeze-out in the Au+Au collisions from the relativistic heavy ion collider (RHIC)beam energy scan program √S_(NN) and in the Cu+Cu collisions at √S_(NN),200 GeV are studied using the thermodynamically consistent Tsallis distribution.The energy density,pressure,and particle density decrease monotonically with the collision energy for the same collision centrality;These properties also decrease monotonically from the central to peripheral collisions at the same collision energy.While the scaled energy densityε∕T^(4) and scaled entropy density s∕T^(3) demonstrate the opposite trend with the collision energy for the same collision centrality.There is a correlation betweenε∕T^(4) and s∕T^(3) at the same centrality.In addition,the squared speed of sound was calculated to determine that all the collision energies share nearly the same value at different collision centralities.
基金supported by Anhui Provincial Key R&D Program(No.202104g0102007)Jiangxi Provincial Department of Education Science and Technology Research Youth Project(GJJ200763)+3 种基金Hubei Provincial Natural Science Foundation of China(No.2022CFB575)Hefei Municipal Natural Science Foundation(No.2022011)Ministry of Education Industry-Education Cooperation Project(No.202102647014)Science Island Graduate Innovation and Entrepreneurship Fund Project(No.KY-2022-SC-04)。
文摘Betavoltaic nuclear batteries offer a promising alternative energy source that harnesses the power of beta particles emitted by radioisotopes.To satisfy the power demands of microelectromechanical systems(MEMS),3D structures have been proposed as a potential solution.Accordingly,this paper introduces a novel 3D^(63)Ni–SiC-based P^(+)PNN^(+)structure with a multi-groove design,avoiding the need for PN junctions on the inner surface,and thus reducing leakage current and power losses.Monte Carlo simulations were performed considering the fully coupled physical model to extend the electron–hole pair generation rate to a 3D structure,enabling the efficient design and development of betavoltaic batteries with complex 3D structures.As a result,the proposed model produces the significantly higher maximum output power density of 19.74μW/cm^(2) and corresponding short-circuit current,open-circuit voltage,and conversion efficiency of 8.57μA/cm^(2),2.45 V,and4.58%,respectively,compared with conventional planar batteries.From analysis of the carrier transport and collection characteristics using the COMSOL Multiphysics code,we provide deep insights regarding power increase,and elucidate the discrepancies between the ideal and simulated performances of betavoltaic batteries.Our work offers a promising approach for the design and optimization of high-output betavoltaic nuclear batteries with a unique 3D design,and serves as a valuable reference for future device fabrication.
文摘Recently an algorithm that acts the variational principle directly to a coherent-pair condensate (VDPC) has been proposed. This algorithm can avoid time-consuming projection while maintaining particle number conservation. Quickly computation of many-pair density matrix (MPDM) is one of the keys to improve the computational efficiency of VDPC algorithm. In this work, we propose a scheme that limits the energy range of block particles to the vicinity of the Fermi surface, which reduces the time complexity of computing the MPDM without losing physical details. The results show that by appropriately limiting the energy range, we can greatly reduce the number of matrix elements that need to be computed, and reducing the time required for the computation.
文摘In this study, density measurements were observed by using gamma transmission technique. Co-60 gamma emitter was used as gamma radioisotope source. Regarding the gamma-ray transmission method, initial radiation intensity (I0) and radiation intensity (I) determined experimentally and [I/I0] rates were calculated and then density of materials could be determined by using Beer-Lambert Equation. Experimental application performed on widespread industrial metals or metal alloys e.g. lead, copper and steel, brass. With this study, it is shown that gamma transmission technique can be used for density measurements.
文摘Purpose: To evaluate the performance of a phacoemulsification system in terms of effective (EPT) and total phaco time (TPT) using 20G and 21G phaco tips. Methods: Retrospective comparative study including 143 consecutive cataractous eyes undergoing phacoemulsification cataract surgery with the Visalis 500 device. The 20G and 21G phaco tips were used in 46 and 97 eyes, respectively. The EPT and TPT values were evaluated. Results: Median TPT was 11.25 s and 17.50 s in the 20G and 21G groups, respectively (p = 0.0011). Median EPT values were 3.15 s and 5.00 s in the 20G and 21G groups, respectively (p = 0.0032). TPT and EPT were significantly lower in 3/3+ cataract eyes compared to 4/4+ using both tips (p < 0.001). Conclusions: The Visalis 500 allows cataract surgery with reduced TPT and EPT, even in hard cataracts. The use of the 20G phaco tip provides an additional benefit in terms of reduction of phaco time.
文摘β decay is one of the most fundamental and thoroughly studied nuclear decay. Surprisingly, the β decay rates were found to have a periodic time variability [1]. However, others argued that there is no evidence for such cyclic deviation from the exponential first order kinetics decay law [2]. Here we propose that the β decay is a pseudo-first order exchange reaction triggered by uddũexotic mesons and propose a QCD gas theory. In analogy to the atmospheric gas density, the proposed QCD gas density drops with elevation from the sun. Accordingly, we propose that the β decay rate periodic variability is due to the pseudo-first order exchange reaction kinetics and the QCD gas atmospheric density drop. The proposed QCD gas may be a possible candidate for Einstein’s general theory of relativity ether [3]. Our main results are the derived formulas for calculating the effective mass of the QCD gas and the cosmology perfect fluid equation of state dimensionless parameter, based on the measured ratio of the β decay rates at the earth trajectory aphelion and perihelion dates. .
基金①The project supported in part by the International Atomic Energy Agencythe National Natural Science Founda tion of China
文摘As a library of nuclear basic data and nuclear model parameters for nuclear model calculations,Chinese Evaluated Nuclear Parameter Library(CENPL)at Chinese Nuclear Data Center(CNDC)consists of six sub-libraries and is still under development.Most of the data fries for this library have beenset up.These sub-libraries have been used to retrieve the data required for nuclear model calculations andother purposes.