期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
Targeting nuclear factor erythroid 2-related factor 2-regulated ferroptosis to treat nervous system diseases
1
作者 Ye-Qi Huang Zheng-Wei Huang Xue-Juan Zhang 《World Journal of Clinical Cases》 SCIE 2024年第33期6655-6659,共5页
By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bi... By critically examining the work,we conducted a comprehensive bibliometric analysis on the role of nuclear factor erythroid 2-related factor 2(NRF2)in nervous system diseases.We also proposed suggestions for future bibliometric studies,including the integration of multiple websites,analytical tools,and analytical approaches,The findings presented provide compelling evidence that ferroptosis is closely associated with the therapeutic challenges of nervous system diseases.Targeted modulation of NRF2 to regulate ferroptosis holds substantial potential for effectively treating these diseases.Future NRF2-related research should not only focus on discovering new drugs but also on designing rational drug delivery systems.In particular,nanocarriers offer substantial potential for facilitating the clinical translation of NRF2 research and addressing existing issues related to NRF2-related drugs. 展开更多
关键词 BIBLIOMeTRIC Nervous system diseases nuclear factor erythroid 2-related factor 2 Ferroptosis TARGeT
下载PDF
Emerging trends and hotspots of Nuclear factor erythroid 2-related factor 2 in nervous system diseases 被引量:1
2
作者 Xue-Qin Chang Ling Xu +3 位作者 Yi-Xuan Zuo Yi-Guo Liu Jia Li Hai-Tao Chi 《World Journal of Clinical Cases》 SCIE 2023年第32期7833-7851,共19页
BACKGROUND The Nuclear factor erythroid 2-related factor 2(NRF2)transcription factor has attracted much attention in the context of neurological diseases.However,none of the studies have systematically clarified this ... BACKGROUND The Nuclear factor erythroid 2-related factor 2(NRF2)transcription factor has attracted much attention in the context of neurological diseases.However,none of the studies have systematically clarified this field's research hotspots and evolution rules.AIM To investigate the research hotspots,evolution patterns,and future research trends in this field in recent years.METHODS We conducted a comprehensive literature search in the Web of Science Core Collection database using the following methods:(((((TS=(NFE2 L2))OR TS=(Nfe2 L2 protein,mouse))OR TS=(NF-E2-Related Factor 2))OR TS=(NRF2))OR TS=(NFE2L2))OR TS=(Nuclear factor erythroid2-related factor 2)AND(((((((TS=(neurological diseases))OR TS=(neurological disorder))OR TS=(brain disorder))OR TS=(brain injury))OR TS=(central nervous system disease))OR TS=(CNS disease))OR TS=(central nervous system disorder))OR TS=(CNS disorder)AND Language=English from 2010 to 2022.There are just two forms of literature available:Articles and reviews.Data were processed with the software Cite-Space(version 6.1.R6).RESULTS We analyzed 1884 articles from 200 schools in 72 countries/regions.Since 2015,the number of publications in this field has increased rapidly.China has the largest number of publications,but the articles published in the United States have better centrality and H-index.Among the top ten authors with the most published papers,five of them are from China,and the author with the most published papers is Wang Handong.The institution with the most articles was Nanjing University.To their credit,three of the top 10 most cited articles were written by Chinese scholars.The keyword co-occurrence map showed that"oxidative stress","NRF2","activation","expression"and"brain"were the five most frequently used keywords.CONCLUSION Research on the role of NRF2 in neurological diseases continues unabated.Researchers in developed countries published more influential papers,while Chinese scholars provided the largest number of articles.There have been numerous studies on the mechanism of NRF2 transcription factor in neurological diseases.NRF2 is also emerging as a potentially effective target for the treatment of neurological diseases.However,despite decades of research,our knowledge of NRF2 transcription factor in nervous system diseases is still limited.Further studies are needed in the future. 展开更多
关键词 nuclear factor erythroid 2-related factor 2 Nervous system diseases BRAIN expression ACTIVATION Ferroptosis
下载PDF
Neuroprotective effects of salidroside on focal cerebral ischemia/reperfusion injury involve the nuclear erythroid 2-related factor 2 pathway 被引量:26
3
作者 Jing Han Qing Xiao +4 位作者 Yan-hua Lin Zhen-zhu Zheng Zhao-dong He Juan Hu Li-dian Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第12期1989-1996,共8页
Salidroside,the main active ingredient extracted from Rhodiola crenulata,has been shown to be neuroprotective in ischemic cerebral injury,but the underlying mechanism for this neuroprotection is poorly understood.In t... Salidroside,the main active ingredient extracted from Rhodiola crenulata,has been shown to be neuroprotective in ischemic cerebral injury,but the underlying mechanism for this neuroprotection is poorly understood.In the current study,the neuroprotective effect of salidroside on cerebral ischemia-induced oxidative stress and the role of the nuclear factor erythroid 2-related factor 2(Nrf2)pathway was investigated in a rat model of middle cerebral artery occlusion.Salidroside(30 mg/kg)reduced infarct size,improved neurological function and histological changes,increased activity of superoxide dismutase and glutathione-S-transferase,and reduced malon-dialdehyde levels after cerebral ischemia and reperfusion.Furthermore,salidroside apparently increased Nrf2 and heme oxygenase-1 expression.These results suggest that salidroside exerts its neuroprotective effect against cerebral ischemia through anti-oxidant mechanisms and that activation of the Nrf2 pathway is involved.The Nrf2/antioxidant response element pathway may become a new therapeutic target for the treatment of ischemic stroke. 展开更多
关键词 nerve regeneration traditional Chinese medicine SALIDROSIDe cerebral ischemia andreperfusion nuclear factor erythroid 2-related factor 2 heme oxygenase-1 middle cerebral arteryocclusion model superoxide dismutase NeUROPROTeCTION neural regeneration
下载PDF
Interplay between nuclear factor erythroid 2-related factor 2 and inflammatory mediators in COVID-19-related liver injury 被引量:2
4
作者 Dan-Dan Zhu Xue-Mei Tan +9 位作者 Li-Qing Lu Si-Jia Yu Ru-Li Jian Xin-Fang Liang Yi-Xuan Liao Wei Fan LucíiaBarbier-Torres Austin Yang He-Ping Yang Ting Liu 《World Journal of Gastroenterology》 SCIE CAS 2021年第22期2944-2962,共19页
Coronavirus disease 2019(COVID-19)caused by severe acute respiratory syndrome coronavirus 2 is a global pandemic and poses a major threat to human health worldwide.In addition to respiratory symptoms,COVID-19 is usual... Coronavirus disease 2019(COVID-19)caused by severe acute respiratory syndrome coronavirus 2 is a global pandemic and poses a major threat to human health worldwide.In addition to respiratory symptoms,COVID-19 is usually accompanied by systemic inflammation and liver damage in moderate and severe cases.Nuclear factor erythroid 2-related factor 2(NRF2)is a transcription factor that regulates the expression of antioxidant proteins,participating in COVID-19-mediated inflammation and liver injury.Here,we show the novel reciprocal regulation between NRF2 and inflammatory mediators associated with COVID-19-related liver injury.Additionally,we describe some mechanisms and treatment strategies. 展开更多
关键词 COVID-19-related liver injury nuclear factor erythroid 2-related factor 2 Inflammatory mediator Oxidative stress Therapeutic targets
下载PDF
Nuclear factor erythroid 2-related factor 2-mediated signaling and metabolic associated fatty liver disease 被引量:2
5
作者 Vidyasagar Naik Bukke Archana Moola +2 位作者 Gaetano Serviddio Gianluigi Vendemiale Francesco Bellanti 《World Journal of Gastroenterology》 SCIE CAS 2022年第48期6909-6921,共13页
Oxidative stress is a key driver in the development and progression of several diseases,including metabolic associated fatty liver disease(MAFLD).This condition includes a wide spectrum of pathological injuries,extend... Oxidative stress is a key driver in the development and progression of several diseases,including metabolic associated fatty liver disease(MAFLD).This condition includes a wide spectrum of pathological injuries,extending from simple steatosis to inflammation,fibrosis,cirrhosis,and hepatocellular carcinoma.Excessive buildup of lipids in the liver is strictly related to oxidative stress in MAFLD,progressing to liver fibrosis and cirrhosis.The nuclear factor erythroid 2-related factor 2(NRF2)is a master regulator of redox homeostasis.NRF2 plays an important role for cellular protection by inducing the expression of genes related to antioxidant,anti-inflammatory,and cytoprotective response.Consistent evidence demonstrates that NRF2 is involved in every step of MAFLD development,from simple steatosis to inflammation,advanced fibrosis,and initiation/progression of hepatocellular carcinoma.NRF2 activators regulate lipid metabolism and oxidative stress alleviating the fatty liver disease by inducing the expression of cytoprotective genes.Thus,modulating NRF2 activation is crucial not only in understanding specific mechanisms underlying MAFLD progression but also to characterize effective therapeutic strategies.This review outlined the current knowledge on the effects of NRF2 pathway,modulators,and mechanisms involved in the therapeutic implications of liver steatosis,inflammation,and fibrosis in MAFLD. 展开更多
关键词 Nonalcoholic fatty liver disease Metabolic-associated fatty liver disease nuclear factor erythroid 2-related factor 2 Oxidative stress ANTIOXIDANTS Liver injury
下载PDF
Keap1-nuclear factor rythroid 2-related factor 2 inhibitor NXPZ ameliorates Aβ1-42-induced cognitive dysfunction in mice
6
作者 SUN Yi CHEN Yu-fei +1 位作者 SHANG Hao HE Ling 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第9期692-693,共2页
OBJECTIVE Nuclear factor erythroid 2-related factor 2(Nrf2) is found to be ubiquitiously expressed in many tissues,and works as the key regulator against oxidative stress damage in cells and organs,which makes Nrf2 a ... OBJECTIVE Nuclear factor erythroid 2-related factor 2(Nrf2) is found to be ubiquitiously expressed in many tissues,and works as the key regulator against oxidative stress damage in cells and organs,which makes Nrf2 a widely concerned drug target.Recent research has identified that Nrf2 is involved in the pathology of Alzheimer disease(AD),whereas the mechanism is unknown.The purpose of this study is to figure out the role of Nrf2 in the pathologic process of AD through Nrf2-Keap1-ARE pathway and the effects of Keap1-Nrf2 inhibitor in AD mice models.METHODS Amyloid β^(1-42)(Aβ^(1-42))was injected into the bilateral hippocampus to induce the cognitive dysfunction in eight-week old male mice.The mice were treated with Keap1-Nrf2 inhibitor NXPZ of three doses as well as donepezil as a positive control by intragastric administration one time a day for one week.Several behavior tests were used to analyze the mice learning and memory ability.Additionally,we detected Nrf2 and Aβ in the plasma in mice with ELISA kits,as well as some factors related to oxidative stress in the hippocampus and cortex.The expression levels of Nrf2,Keap1,Tau and p-Tau were measured in the murine brain tissue with Western blotting.SH-SY5 Y cells were studied as an in vitro model to further clarify the mechanism.RESULTS The treatment of NXPZ ameliorated learning and memory dysfunction in AD mice in a dose-dependent manner,and the high dose group recovered better than the positive drug group.The plasma Nrf2 level was increased in a dose-dependent manner in the treatment groups;however,the plasma Aβ was decreased.What′ s more,superoxide dismutase(SOD) and glutathione reductase(GSSH) in the hippocampus and cortex were increased in the treatment group,while the malondialdehyde(MDA) was decreased,meaning that NXPZ treatment promoted expression of the anti-oxidative factors and inhibited the expression of the oxidative factors in the down-stream.Western blotting analysis of hippocampus and cortex showed up-regulated Nrf2,decreased Keap1 and decreased p-Tau in NXPZ treatment mice.In ex vivo experiments,when SH-SY5 Y cells were treated with Aβ,Nrf2 in the cytoplasm was increased,as well as the expression Nrf2 in the nuclear was decreased.The treatment of NXPZ increased nuclear Nrf2,decreased cytoplasm Nrf2,and decreased the expression of p-Tau.CONCLUSION Nrf2 has an important role in neuron function.Nrf2 activation by selective Keap1-Nrf2 inhibitor NXPZ may contribute to improve cognitive function in AD mice.The mechanism may be related to increased generation and release of Nrf2 induced by more disaggregation with Keap1,leading to more expression of anti-oxidative molecules to protect the damage caused by Aβ.These results indicates that Nrf2 may be a novel therapeutic target of AD and Keap1-Nrf2 inhibitor may be a novel medication for protecting the loss of learning and memory ability. 展开更多
关键词 ALZHeIMeR disease nuclear factorerythroid 2-related factor 2 AMYLOID β protein OXIDATIVe stress
下载PDF
Short hairpin RNA-mediated knockdown of nuclear factor erythroid 2-like 3 exhibits tumor-suppressing effects in hepatocellular carcinoma cells 被引量:3
7
作者 Miao-Mei Yu Yue-Hua Feng +2 位作者 Lu Zheng Jun Zhang Guang-Hua Luo 《World Journal of Gastroenterology》 SCIE CAS 2019年第10期1210-1222,共13页
BACKGROUND Hepatocellular carcinoma(HCC) is one of the most common malignant tumors with high mortality-to-incidence ratios. Nuclear factor erythroid 2-like 3(NFE2 L3), also known as NRF3, is a member of the cap ‘n&#... BACKGROUND Hepatocellular carcinoma(HCC) is one of the most common malignant tumors with high mortality-to-incidence ratios. Nuclear factor erythroid 2-like 3(NFE2 L3), also known as NRF3, is a member of the cap ‘n' collar basic-region leucine zipper family of transcription factors. NFE2 L3 is involved in the regulation of various biological processes, whereas its role in HCC has not been elucidated.AIM To explore the expression and biological function of NFE2 L3 in HCC.METHODS We analyzed the expression of NFE2 L3 in HCC tissues and its correlation with clinicopathological parameters based on The Cancer Genome Atlas(TCGA) data portal. Short hairpin RNA(shRNA) interference technology was utilized to knock down NFE2 L3 in vitro. Cell apoptosis, clone formation, proliferation, migration,and invasion assays were used to identify the biological effects of NFE2 L3 in BEL-7404 and SMMC-7721 cells. The expression of epithelial-mesenchymal transition(EMT) markers was examined by Western blot analysis.RESULTS TCGA analysis showed that NFE2 L3 expression was significantly positively correlated with tumor grade, T stage, and pathologic stage. The qPCR and Western blot results showed that both the mRNA and protein levels of NFE2 L3 were significantly decreased after shRNA-mediated knockdown in BEL-7404 and SMMC-7721 cells. The shRNA-mediated knockdown of NFE2 L3 could induce apoptosis and inhibit the clone formation and cell proliferation of SMMC-7721 and BEL-7404 cells. NFE2 L3 knockdown also significantly suppressed the migration, invasion, and EMT of the two cell lines.CONCLUSION Our study showed that shRNA-mediated knockdown of NFE2 L3 exhibited tumor-suppressing effects in HCC cells. 展开更多
关键词 nuclear factor eRYTHROID 2-like 3 Hepatocellular carcinoma The Cancer Genome Atlas Short HAIRPIN RNA epithelial-mesenchymal transition
下载PDF
PLOD1、NFE2L3、KLKB1蛋白在结直肠癌组织中的表达水平及与其临床病理特征的相关性
8
作者 符星 刘鑫 陈艳妮 《临床和实验医学杂志》 2024年第18期1950-1953,共4页
目的 探讨前胶原赖氨酸2-氧代戊二酸5-双加氧酶1(PLOD1)、核因子E2相关因子3(NFE2L3)、血浆激肽释放酶B1(KLKB1)蛋白在结直肠癌组织中的表达水平及与其临床病理特征的相关性。方法 回顾性选取2020年1月至2023年12月安康市中心医院收治的... 目的 探讨前胶原赖氨酸2-氧代戊二酸5-双加氧酶1(PLOD1)、核因子E2相关因子3(NFE2L3)、血浆激肽释放酶B1(KLKB1)蛋白在结直肠癌组织中的表达水平及与其临床病理特征的相关性。方法 回顾性选取2020年1月至2023年12月安康市中心医院收治的120例结直肠癌患者作为研究对象。分别取患者的结直肠癌组织及癌旁组织进行免疫组织化学检测,检测PLOD1、NFE2L3、KLKB1蛋白表达水平。并对比不同TNF分期、组织分化程度、淋巴结转移患者PLOD1、NFE2L3、KLKB1蛋白表达水平,并采用Spearman相关性分析法分析PLOD1、NFE2L3、KLKB1蛋白表达水平与临床病理特征的相关性。结果 结直肠癌组织PLOD1、NFE2L3蛋白阳性率分别为70.00%、60.00%,均高于癌旁组织(22.50%、17.50%),结直肠癌组织KLKB1蛋白阳性率为43.33%,低于癌旁组织(71.67%),差异均有统计学意义(P<0.05)。TNF分期Ⅳ期患者PLOD1与NFE2L3蛋白阳性率分别为100.00%与95.24%,均明显高于Ⅲ期(83.33%与73.33%)、Ⅱ期(59.09%与45.45%)、Ⅰ期(48.00%与32.00%),Ⅳ期患者KLKB1蛋白阳性率为14.29%,明显低于Ⅲ期(36.67%)、Ⅱ期(34.09%)、Ⅰ期(92.00%),差异均有统计学意义(P<0.05)。低分化患者PLOD1与NFE2L3蛋白阳性率分别为100.00%与90.00%,明显高于中分化(81.13%与50.94%)、高分化(44.68%与23.40%),低分化患者KLKB1蛋白阳性率为20.00%,明显低于中分化(30.19%)、高分化(68.09%),差异均有统计学意义(P<0.05)。Spearman相关分析显示:PLOD1、NFE2L3与TNF分期、淋巴结转移、肿瘤分化程度具有相关性,KLKB1与TNF分期、淋巴结转移、肿瘤分化程度具有相关性(P<0.05)。结论 结直肠癌患者肿瘤组织中PLOD1、NFE2L3蛋白呈现低表达状态,KLKB1蛋白呈现高表达状态,且PLOD1、NFE2L3、KLKB1蛋白表达水平与结直肠癌的TNF分期、组织分化程度及淋巴结转移情况密切相关。 展开更多
关键词 结直肠肿瘤 前胶原赖氨酸2-氧代戊二酸5-双加氧酶1 核因子e2相关因子3 血浆激肽释放酶B1
下载PDF
High glucose reduces Nrf2-dependent cRAGE release and enhances inflammasome-dependent IL-1βproduction in monocytes:the modulatory effects of EGCG 被引量:1
9
作者 Chi-Hao Wu Yin-Hsuan Chang +2 位作者 Chin-Lin Hsu Sheng-Yi Chen Gow-Chin Yen 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1531-1542,共12页
Soluble receptor for advanced glycation end products(sRAGE)acts as a decoy sequestering of RAGE ligands,thus preventing the activation of the ligand-RAGE axis linking human diseases.However,the molecular mechanisms un... Soluble receptor for advanced glycation end products(sRAGE)acts as a decoy sequestering of RAGE ligands,thus preventing the activation of the ligand-RAGE axis linking human diseases.However,the molecular mechanisms underlying sRAGE remain unclear.In this study,THP-1 monocytes were cultured in normal glucose(NG,5.5 mmol/L)and high glucose(HG,15 mmol/L)to investigate the effects of diabetesrelevant glucose concentrations on sRAGE and interleukin-1β(IL-1β)secretion.The modulatory effects of epigallocatechin gallate(EGCG)in response to HG challenge were also evaluated.HG enhanced intracellular reactive oxygen species(ROS)generation and RAGE expression.The secretion of sRAGE,including esRAGE and cRAGE,was reduced under HG conditions,together with the downregulation of a disintegrin and metallopeptidase 10(ADAM10)and nuclear factor erythroid 2-related factor 2(Nrf2)nuclear translocation.Mechanistically,the HG effects were counteracted by siRAGE and exacerbated by siNrf2.Chromatin immunoprecipitation results showed that Nrf2 binding to the ADAM10 promoter and HG interfered with this binding.Our data reinforce the notion that RAGE and Nrf2 might be sRAGE-regulating factors.Under HG conditions,the treatment of EGCG reduced ROS generation and RAGE activation.EGCG-stimulated cRAGE release was likely caused by the upregulation of the Nrf2-ADAM10 pathway.EGCG inhibited HG-mediated NLRP3 inflammasome activation at least partly by stimulating sRAGE,thereby reducing IL-1βrelease. 展开更多
关键词 epigallocatechin gallate(eGCG) INFLAMMASOMe nuclear factor erythroid 2-related factor 2(Nrf2) Receptor for advanced glycation end products(RAGe) Soluble RAGe(sRAGe)
下载PDF
GSK3/Nrf2调控的生物节律在机体衰老中的规律
10
作者 陈伊琳 蒋晓波 +1 位作者 屈红林 刘瑞莲 《中国组织工程研究》 CAS 北大核心 2025年第6期1257-1264,共8页
背景:生物节律(昼夜节律)紊乱是一个典型的与衰老有关的问题,维持生物节律的正常运作可能是一种很有前景的抗衰老策略。核转录因子NF-E2相关因子2的表达具有生物节律;糖原合成酶激酶3系统代表了一个“调节阀”,它控制核转录因子NF-E2相... 背景:生物节律(昼夜节律)紊乱是一个典型的与衰老有关的问题,维持生物节律的正常运作可能是一种很有前景的抗衰老策略。核转录因子NF-E2相关因子2的表达具有生物节律;糖原合成酶激酶3系统代表了一个“调节阀”,它控制核转录因子NF-E2相关因子2水平的细微振荡。抗氧化基因转录水平的昼夜变化可以影响生物体对氧化应激的反应,但是糖原合成酶激酶3/NF-E2相关因子2在调节机体衰老中的具体分子机制仍令人困惑。目的:拟通过对该领域文献的回顾,寻找糖原合成酶激酶3/核转录因子NF-E2相关因子2调控的生物节律在机体衰老中的一般规律。方法:文献资料法通过对有关“糖原合成酶激酶3、核转录因子NF-E2相关因子2、生物节律以及衰老”等相关文献进行检索、查阅和筛选,为全文的分析奠定理论基础。对比分析法通过对所得到文献进行阅读分析,比较文献之间的异同点,为论点提供合理的理论支撑。通过对文献的进一步对比分析,理清相关指标间的关系,为全文的分析明确思路。结果与结论:①糖原合成酶激酶3可通过对节律基因的调节间接调控核转录因子NF-E2相关因子2的表达;②糖原合成酶激酶3和核转录因子NF-E2相关因子2是抗衰老程序的组成部分,且与生物节律相关;③并且糖原合成酶激酶3/核转录因子NF-E2相关因子2参与多种代谢途径,包括与衰老相关疾病(2型糖尿病和癌症)和神经退行性疾病相关的代谢途径。 展开更多
关键词 糖原合成酶激酶3 核转录因子NF-e2相关因子2 生物节律 衰老 神经退行性疾病
下载PDF
大柴胡汤含药血清通过JAK2/STAT3信号通路抑制AR42J细胞炎症反应
11
作者 赵东颖 王清华 +1 位作者 于艳 姚旭 《吉林中医药》 2024年第8期960-964,共5页
目的探讨大柴胡汤含药血清对胰腺腺泡细胞炎症反应的防治作用及可能机制。方法HPLC法检测大柴胡汤中指标成分含量;采用雨蛙肽处理AR42J细胞复制急性腺泡细胞炎症模型,采用CCK-8方法检测大柴胡汤含药血清对细胞活力的影响;Western blot... 目的探讨大柴胡汤含药血清对胰腺腺泡细胞炎症反应的防治作用及可能机制。方法HPLC法检测大柴胡汤中指标成分含量;采用雨蛙肽处理AR42J细胞复制急性腺泡细胞炎症模型,采用CCK-8方法检测大柴胡汤含药血清对细胞活力的影响;Western blot方法检测细胞内JAK2、STAT3及NFκB磷酸化程度;ELISA法检测IL-6和TNF-α含量。结果大柴胡汤中黄芩苷和芍药苷含量分别为13.02 mg/mL、7.19 mg/mL,大柴胡汤含药血清用量不超过20%;大柴胡汤含药血清降低炎性细胞上清液中TNF-α和IL-6含量,降低细胞内JAK2、STAT3及NFκB磷酸化作用,减轻细胞炎症反应;STAT3抑制剂cucurbitacin可减弱大柴胡汤的炎症抑制作用。结论大柴胡汤含药血清可减轻腺泡细胞急性炎症作用,其机制可能为抑制细胞内JAK2/STAT3信号通路进而降低NFκB活性,减少促炎性细胞因子合成。 展开更多
关键词 大柴胡汤 急性胰腺炎 酪氨酸蛋白激酶2 信号传导与转录激活因子3 白介素-6 核因子ΚB
下载PDF
基于Nrf2-NLRP3途径研究桃红四物汤干预糖尿病大鼠心肌损伤的作用机制
12
作者 文中玉 都永勤 +1 位作者 叶敏 沈安鲁 《安徽中医药大学学报》 CAS 2024年第4期77-83,共7页
目的观察桃红四物汤对糖尿病大鼠心脏的保护作用,同时基于核因子E2相关因子2(nuclear factor-E2-related factor 2,Nrf2)/血红素加氧酶-1(heme oxygenase-1,HO-1)和NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein d... 目的观察桃红四物汤对糖尿病大鼠心脏的保护作用,同时基于核因子E2相关因子2(nuclear factor-E2-related factor 2,Nrf2)/血红素加氧酶-1(heme oxygenase-1,HO-1)和NOD样受体热蛋白结构域相关蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)通路探讨其作用机制。方法腹腔注射链脲佐菌素复制糖尿病心肌病大鼠模型,将模型复制成功的大鼠分为模型组,桃红四物汤低、中、高剂量组,每组10只,另设10只正常大鼠作为对照组。比较各组大鼠血糖、超氧化物歧化酶(superoxide dismutase,SOD)、丙二醛(malondialdehyde,MDA)和B型利钠肽(B-type natriuretic peptide,BNP)、肌钙蛋白I(cardiac troponin I,cTnI)水平。采用苏木精—伊红染色和Masson染色观察大鼠心肌组织病理变化。制备心肌组织匀浆,使用流式细胞术进行线粒体膜电位检测。Western blot法检测Nrf2、HO-1、Kelch样环氧氯丙烷相关蛋白1(Kelch-like ECH-associated protein 1,Keap1)、NLRP3、半胱氨酸天冬氨酸酶1剪切体(cleaved-caspase-1)、消皮素D(gasdermin D,GSDMD)和消皮素D蛋白N端结构域(N-terminal gasdermin D-N,GSDMD-N)蛋白表达水平。结果与对照组比较,模型组大鼠血糖升高,心肌纤维断裂、排列紊乱,炎症细胞浸润明显,胶原沉积明显;与模型组比较,桃红四物汤低、中、高剂量组大鼠心肌纤维化明显改善。与对照组比较,模型组SOD活性显著降低(P<0.05),MDA、BNP及cTnI水平显著升高(P<0.05);与模型组比较,桃红四物汤低、中、高剂量组SOD活性显著升高(P<0.05),MDA、BNP、cTnI水平显著降低(P<0.05)。与对照组比较,模型组心肌组织线粒体膜电位显著降低(P<0.05);与模型组比较,桃红四物汤低、中、高剂量组心肌组织线粒体膜电位显著升高(P<0.05)。与对照组比较,模型组心肌组织中Nrf2、HO-1、NLRP3、cleaved-caspase-1、GSDMD和GSDMD-N蛋白表达水平均显著升高(P<0.05);与模型组比较,桃红四物汤低、中、高剂量组心肌组织中Nrf2和HO-1蛋白表达水平均显著升高(P<0.05),Keap1、NLRP3、cleaved-caspase-1、GSDMD和GSDMD-N蛋白表达水平均显著降低(P<0.05)。结论桃红四物汤改善糖尿病心肌病的机制可能与调节Nrf2-NLRP3途径,抗氧化应激及抑制细胞焦亡相关。 展开更多
关键词 桃红四物汤 糖尿病心肌病 Nrf2/HO-1信号通路 NLRP3/caspase-1/GSDMD信号通路
下载PDF
Hydrogen sulfide reduces oxidative stress in Huntington's disease via Nrf2
13
作者 Zige Jiang Dexiang Liu +7 位作者 Tingting Li Chengcheng Gai Danqing Xin Yijing Zhao Yan Song Yahong Cheng Tong Li Zhen Wang 《Neural Regeneration Research》 SCIE CAS 2025年第6期1776-1788,共13页
The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular an... The pathophysiology of Huntington's disease involves high levels of the neurotoxin quinolinic acid. Quinolinic acid accumulation results in oxidative stress, which leads to neurotoxicity. However, the molecular and cellular mechanisms by which quinolinic acid contributes to Huntington's disease pathology remain unknown. In this study, we established in vitro and in vivo models of Huntington's disease by administering quinolinic acid to the PC12 neuronal cell line and the striatum of mice, respectively. We observed a decrease in the levels of hydrogen sulfide in both PC12 cells and mouse serum, which was accompanied by down-regulation of cystathionine β-synthase, an enzyme responsible for hydrogen sulfide production. However, treatment with NaHS(a hydrogen sulfide donor) increased hydrogen sulfide levels in the neurons and in mouse serum, as well as cystathionine β-synthase expression in the neurons and the mouse striatum, while also improving oxidative imbalance and mitochondrial dysfunction in PC12 cells and the mouse striatum. These beneficial effects correlated with upregulation of nuclear factor erythroid 2-related factor 2 expression. Finally, treatment with the nuclear factor erythroid 2-related factor 2inhibitor ML385 reversed the beneficial impact of exogenous hydrogen sulfide on quinolinic acid-induced oxidative stress. Taken together, our findings show that hydrogen sulfide reduces oxidative stress in Huntington's disease by activating nuclear factor erythroid 2-related factor 2,suggesting that hydrogen sulfide is a novel neuroprotective drug candidate for treating patients with Huntington's disease. 展开更多
关键词 apoptosis CYSTATHIONINe-Β-SYNTHASe nuclear factor erythroid 2-related factor 2 Huntington's disease hydrogen sulfide MITOCHONDRION NeUROPLASTICITY oxidative stress quinolinic acid reactive oxygen species
下载PDF
Oxidative stress in retinal pigment epithelium degeneration:from pathogenesis to therapeutic targets in dry age-related macular degeneration 被引量:3
14
作者 Meenakshi Maurya Kiran Bora +4 位作者 Alexandra K.Blomfield Madeline C.Pavlovich Shuo Huang Chi-Hsiu Liu Jing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2173-2181,共9页
Age-related macular degeneration is a primary cause of blindness in the older adult population. Past decades of research in the pathophysiology of the disease have resulted in breakthroughs in the form of anti-vascula... Age-related macular degeneration is a primary cause of blindness in the older adult population. Past decades of research in the pathophysiology of the disease have resulted in breakthroughs in the form of anti-vascular endothelial growth factor therapies against neovascular age-related macular degeneration;however, effective treatment is not yet available for geographical atrophy in dry agerelated macular degeneration or for preventing the progression from early or mid to the late stage of age-related macular degeneration. Both clinical and experimental investigations involving human agerelated macular degeneration retinas and animal models point towards the atrophic alterations in retinal pigment epithelium as a key feature in age-related macular degeneration progression. Retinal pigment epithelium cells are primarily responsible for cellular-structural maintenance and nutrition supply to keep photoreceptors healthy and functional. The retinal pigment epithelium constantly endures a highly oxidative environment that is balanced with a cascade of antioxidant enzyme systems regulated by nuclear factor erythroid-2-related factor 2 as a main redox sensing transcription factor. Aging and accumulated oxidative stress triggers retinal pigment epithelium dysfunction and eventually death. Exposure to both environmental and genetic factors aggravates oxidative stress damage in aging retinal pigment epithelium and accelerates retinal pigment epithelium degeneration in age-related macular degeneration pathophysiology. The present review summarizes the role of oxidative stress in retinal pigment epithelium degeneration, with potential impacts from both genetic and environmental factors in age-related macular degeneration development and progression. Potential strategies to counter retinal pigment epithelium damage and protect the retinal pigment epithelium through enhancing its antioxidant capacity are also discussed, focusing on existing antioxidant nutritional supplementation, and exploring nuclear factor erythroid-2-related factor 2 and its regulators including REV-ERBα as therapeutic targets to protect against age-related macular degeneration development and progression. 展开更多
关键词 age-related macular degeneration ANTIOXIDANT nuclear factor erythroid-2-related factor 2 oxidative stress retinal pigment epithelium ReV-eRBα
下载PDF
Lactobacillus plantarum J26 alleviates alcohol-induced oxidative liver injury by regulating the Nrf2 signaling pathway
15
作者 Hongxuan Li Shasha Cheng +6 位作者 Yuhong Wang Yilin Sun Jiaxin Zhang Mingshuang Sun Chaoxin Man Yu Zhang Yujun Jiang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2068-2078,共11页
Oxidative stress is one of the main ways to cause alcohol-induced liver injury,and alcoholic liver disease(ALD)has been a common health problem worldwide.Lactic acid bacteria(LAB)is also considered as a potential trea... Oxidative stress is one of the main ways to cause alcohol-induced liver injury,and alcoholic liver disease(ALD)has been a common health problem worldwide.Lactic acid bacteria(LAB)is also considered as a potential treatment to alleviate alcohol-induced liver injury.Lactobacillus plantarum J26 is a LAB isolated from Chinese traditional fermented dairy products with excellent probiotic effects.This study aimed to establish a mice model of alcoholic liver injury through acute-on-chronic alcohol feeding and to study the alleviating effect of pre-intake of L.plantarum J26 on alcohol-induced oxidative liver injury and focus on its potential mechanism of alleviating effect.The results showed that pre-intake of L.plantarum J26 could improve liver pathological changes,reduce lipid accumulation,increase mitochondrial ATP and mitochondrial(mtDNA)levels,and alleviate liver injury.In addition,pre-intake L.plantarum J26 can improve the level of short-chain fatty acids(SCFAs)in the intestines in mice,short chain fatty acids can be used as a signaling molecule activation of nuclear factor E2-related factor 2(Nrf2)signaling pathway to alleviate liver oxidative stress,and maintain mitochondrial homeostasis by regulating the expression of genes related to mitochondrial dynamics and autophagy,thereby reducing cell apoptosis to alleviate alcohol-induced oxidative liver injury. 展开更多
关键词 Alcoholic liver disease PROBIOTICS nuclear factor e2-related factor 2(Nrf2) Oxidative stress Short-chain fatty acids
下载PDF
Etomidate protects retinal ganglion cells from hydrogen peroxide-induced injury via Nrf2/HO-1 pathway
16
作者 Xuan Zhao De-Gang Fan +3 位作者 Xin-Chao Zhang Si-Wei You Fang Kuang Ming-Mei Wu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第9期1606-1613,共8页
AIM:To determine whether etomidate(ET)has a protective effect on retinal ganglion cells(RGCs)injured with hydrogen peroxide(H_(2)O_(2))and to explore the potential mechanism underlying the antioxidative stress effect ... AIM:To determine whether etomidate(ET)has a protective effect on retinal ganglion cells(RGCs)injured with hydrogen peroxide(H_(2)O_(2))and to explore the potential mechanism underlying the antioxidative stress effect of ET.METHODS:Cultured RGCs were identified by double immunofluorescent labeling of microtubule-associated protein 2 and Thy1.1.An injury model of H_(2)O_(2)-induced RGCs oxidative stress was established in vitro.Cells were pretreated with different concentrations of ET(1,5,and 10μmol/L)for 4h,followed by further exposure to H_(2)O_(2)at 1000μmol/L.Cell counting kit 8 and Annexin V/propidium iodide assays were applied to detect the viabilities and apoptosis rates of the RGCs at 12,24,and 48h after H_(2)O_(2)stimulation.The levels of nitric oxide,malondialdehyde,and glutathione in culture media were measured at these time points.Quantitative reverse transcription polymerase chain reaction(qRT-PCR)and Western blot were performed to observe the effects of ET on the messenger RNA and protein expression of inducible nitric oxide synthase(iNOS),nuclear factor erythroid 2-related factor 2(Nrf2),heme oxygenase 1(HO-1),glutathione peroxidase 1 and the level of conjugated acrolein in RGCs at 12,24,and 48h after H_(2)O_(2)stimulation and in the retina at 12h after optic nerve transection(ONT).RESULTS:The applications of 5 and 10μmol/L of ET significantly increased the viability of RGCs.Results from qRT-PCR indicated a decrease in the expression of iNOS and an increase in the expressions of Nrf2 and HO-1 in ETpretreated RGCs at 12,24 and 48h after H_(2)O_(2)stimulation,as well as in ET-treated retinas at 12h after ONT.Western blot analysis revealed a decrease in the expression of iNOS and levels of conjugated acrolein,along with an increase in the expressions of Nrf2 and HO-1 in ET-pretreated RGCs in vitro and ET-treated retinas in vivo.CONCLUSION:ET is a neuroprotective agent in primary cultured RGCs injured by H_(2)O_(2).The effect of ET is dosedependent with the greatest effect being at 10μmol/L.ET plays an antioxidant role by inhibiting iNOS,up-regulating Nrf2/HO-1,decreasing the production of acrolein,and increasing the scavenge of acrolein. 展开更多
关键词 eTOMIDATe retinal ganglion cell NeUROPROTeCTION hydrogen peroxide-induced injury nuclear factor erythroid 2-related factor 2 heme oxygenase 1
下载PDF
Functionalized selenium nanoparticles ameliorated acetaminophen-induced hepatotoxicity through synergistically triggering PKCδ/Nrf2 signaling pathway and inhibiting CYP 2E1
17
作者 Si Zou Yetao Gong +4 位作者 Xiujie Li Yanbin Wu Jinzhong Wu Jianguo Wu Ka-Hing Wong 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期932-945,共14页
Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic ac... Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic activity and clinical application value.Herein,this work was conducted to investigate the protective effect of Pleurotus tuber-regium polysaccharide-protein complex funtionnalized SeNPs(PTR-SeNPs)against acetaminophen(APAP)-induced oxidative injure in HepG2 cells and C57BL/6J mouse liver.Further elucidation of the underlying molecular mechanism,in particular their modulation of Nrf2 signaling pathway was also performed.The results showed that PTR-SeNPs could significantly ameliorate APAP-induced oxidative injury as evidenced by a range of biochemical analysis,histopathological examination and immunoblotting study.PTR-SeNPs could hosphorylate and activate PKCδ,depress Keap1,and increase nuclear accumulation of Nrf2,resulting in upregulation of GCLC,GCLM,HO-1 and NQO-1 expression.Besides,PTR-SeNPs suppressed the biotransformation of APAP to generate intracellular ROS through CYP 2E1 inhibition,restoring the mitochondrial morphology.Furthermore,the protective effect of PTR-SeNPs against APAP induced hepatotoxicity was weakened as Nrf2 was depleted in vivo,indicating the pivotal role of Nrf2 signaling pathway in PTR-SeNPs mediated hepatoprotective efficacy.Being a potential hepatic protectant,PTR-SeNPs could serve as a new source of selenium supplement for health-promoting and biomedical applications. 展开更多
关键词 PTR-SeNPs(polysaccharide-proteincomplex functionalized selenium nanoparticles) Acetaminophen-induced hepatotoxicity nuclear factor erythroid 2-related factor 2 Cytochrome P450 enzyme 2e1 Mitochondria
下载PDF
Procyanidin A_1 and its digestive products alleviate acrylamide-induced IPEC-J2 cell damage through regulating Keap1/Nrf2 pathway
18
作者 Fangfang Yan Qun Lu +1 位作者 Chengming Wang Rui Liu 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1475-1484,共10页
Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In thi... Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In this study,we elucidated the molecular mechanism for and D-A_(1) to alleviate ACR-stimulated IPEC-J2 cell damage.ACR slightly activated nuclear factor erythroid 2-related factor 2(Nrf2)signaling and its target genes,but this activation could not reduce intestine cell damage.A_(1) and D-A_(1) could alleviate ACR-induced cell damage,but the effect was abrogated in cells transiently transfected with Nrf2 small interfering RNA(siRNA).Further investigation confirmed that A_(1) and D-A_(1) interacted with Ketch-like ECH-associated protein 1(Keapl),which boosted the stabilization of Nrf2,subsequently promoted the translocation of Nrf2 into the nucleus,and further increased the expression of antioxidant proteins,thereby inhibiting glutathione(GSH)consumption,maintaining redox balance and eventually alleviating ACR-induced cell damage.Importantly,there was no difference between A_(1) and D-A_(1) treated groups,indicating that A_(1) can tolerate gastrointestinal digestion and may be a potential compound to limit the toxicity of ACR. 展开更多
关键词 Procyanidin A_1 Digestive products Acrylamide nuclear factor erythroid 2-related factor 2(Nrf2) Intestinal cell damage
下载PDF
Context-dependent role of sirtuin 2 in inflammation
19
作者 NoemíSola-Sevilla Maider Garmendia-Berges +1 位作者 MCarmen Mera-Delgado Elena Puerta 《Neural Regeneration Research》 SCIE CAS 2025年第3期682-694,共13页
Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has... Sirtuin 2 is a member of the sirtuin family nicotinamide adenine dinucleotide(NAD~+)-dependent deacetylases, known for its regulatory role in different processes, including inflammation. In this context, sirtuin 2 has been involved in the modulation of key inflammatory signaling pathways and transcription factors by deacetylating specific targets, such as nuclear factor κB and nucleotide-binding oligomerization domain-leucine-rich-repeat and pyrin domain-containing protein 3(NLRP3). However, whether sirtuin 2-mediated pathways induce a pro-or an anti-inflammatory response remains controversial. Sirtuin 2 has been implicated in promoting inflammation in conditions such as asthma and neurodegenerative diseases, suggesting that its inhibition in these conditions could be a potential therapeutic strategy. Conversely, arthritis and type 2 diabetes mellitus studies suggest that sirtuin 2 is essential at the peripheral level and, thus, its inhibition in these pathologies would not be recommended. Overall, the precise role of sirtuin 2 in inflammation appears to be context-dependent, and further investigation is needed to determine the specific molecular mechanisms and downstream targets through which sirtuin 2 influences inflammatory processes in various tissues and pathological conditions. The present review explores the involvement of sirtuin 2 in the inflammation associated with different pathologies to elucidate whether its pharmacological modulation could serve as an effective strategy for treating this prevalent symptom across various diseases. 展开更多
关键词 INTeRFeRON INFLAMMATION LIPOPOLYSACCHARIDe NeUROINFLAMMATION NLRP3 nuclear factorκB sirtuin 2
下载PDF
Targeting Nrf2 signaling in dry eye
20
作者 Yu-Nuo Zhang Wei-Jie Ouyang +1 位作者 Jiao-Yue Hu Zu-Guo Liu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第10期1911-1920,共10页
Dry eye,the most common ocular surface disease,can cause ocular surface tissue damage and discomfort symptoms and seriously affect people’s quality of life.The etiology of dry eye is diverse,and its pathogenesis is c... Dry eye,the most common ocular surface disease,can cause ocular surface tissue damage and discomfort symptoms and seriously affect people’s quality of life.The etiology of dry eye is diverse,and its pathogenesis is complex.The oxidative stress reaction is considered to be among the important factors in the pathogenesis of dry eye.Therefore,activating the antioxidant system has a potential therapeutic effect on dry eye.Nuclear factor erythroid 2-related factor 2(Nrf2)signaling pathway is considered the most important antioxidant pathway in the body.The activation of the Nrf2 signaling pathway and its interaction with other pathways are important mechanisms to prevent the occurrence and development of dry eye.This review describes the structure and function of Nrf2,summarizes the changes in the oxidative stress response in dry eye,focuses on the potential mechanism of the Nrf2 signaling pathway in the treatment of dry eye,and,finally,summarizes the drugs that activate the Nrf2 signaling pathway in the treatment of dry eye. 展开更多
关键词 nuclear factor erythroid 2-related factor 2 KeAP1 dry eye oxidative stress
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部