BACKGROUND Sinapic acid(SA)has been shown to have various pharmacological properties such as antioxidant,antifibrotic,anti-inflammatory,and anticancer activities.Its mechanism of action is dependent upon its ability t...BACKGROUND Sinapic acid(SA)has been shown to have various pharmacological properties such as antioxidant,antifibrotic,anti-inflammatory,and anticancer activities.Its mechanism of action is dependent upon its ability to curb free radical production and protect against oxidative stress-induced tissue injuries.AIM To study the hepatoprotective effects of SA against lipopolysaccharide(LPS)/Dgalactosamine(D-GalN)-induced acute liver failure(ALF)in rats.METHODS Experimental ALF was induced with an intraperitoneal(i.p.)administration of 8μg LPS and 800 mg/kg D-GalN in normal saline.SA was administered orally once daily starting 7 d before LPS/D-GalN treatment.RESULTS Data showed that SA ameliorates acute liver dysfunction,decreases serum levels of alanine transaminase(ALT),and aspartate aminotransferase(AST),as well as malondialdehyde(MDA)and NO levels in ALF model rats.However,pretreatment with SA(20 mg/kg and 40 mg/kg)reduced nuclear factor kappalight-chain-enhancer of activated B cells(NF-κB)activation and levels of inflammatory cytokines(tumor necrosis factor-αand interleukin 6).Also,SA increased the activity of the nuclear factor erythroid-related factor 2/heme oxygenase-1(Nrf2/HO-1)signaling pathway.CONCLUSION In conclusion,SA offers significant protection against LPS/D-GalN-induced ALF in rats by upregulating Nrf2/HO-1 and downregulating NF-κB.展开更多
Salidroside,the main active ingredient extracted from Rhodiola crenulata,has been shown to be neuroprotective in ischemic cerebral injury,but the underlying mechanism for this neuroprotection is poorly understood.In t...Salidroside,the main active ingredient extracted from Rhodiola crenulata,has been shown to be neuroprotective in ischemic cerebral injury,but the underlying mechanism for this neuroprotection is poorly understood.In the current study,the neuroprotective effect of salidroside on cerebral ischemia-induced oxidative stress and the role of the nuclear factor erythroid 2-related factor 2(Nrf2)pathway was investigated in a rat model of middle cerebral artery occlusion.Salidroside(30 mg/kg)reduced infarct size,improved neurological function and histological changes,increased activity of superoxide dismutase and glutathione-S-transferase,and reduced malon-dialdehyde levels after cerebral ischemia and reperfusion.Furthermore,salidroside apparently increased Nrf2 and heme oxygenase-1 expression.These results suggest that salidroside exerts its neuroprotective effect against cerebral ischemia through anti-oxidant mechanisms and that activation of the Nrf2 pathway is involved.The Nrf2/antioxidant response element pathway may become a new therapeutic target for the treatment of ischemic stroke.展开更多
AIM:To determine whether etomidate(ET)has a protective effect on retinal ganglion cells(RGCs)injured with hydrogen peroxide(H_(2)O_(2))and to explore the potential mechanism underlying the antioxidative stress effect ...AIM:To determine whether etomidate(ET)has a protective effect on retinal ganglion cells(RGCs)injured with hydrogen peroxide(H_(2)O_(2))and to explore the potential mechanism underlying the antioxidative stress effect of ET.METHODS:Cultured RGCs were identified by double immunofluorescent labeling of microtubule-associated protein 2 and Thy1.1.An injury model of H_(2)O_(2)-induced RGCs oxidative stress was established in vitro.Cells were pretreated with different concentrations of ET(1,5,and 10μmol/L)for 4h,followed by further exposure to H_(2)O_(2)at 1000μmol/L.Cell counting kit 8 and Annexin V/propidium iodide assays were applied to detect the viabilities and apoptosis rates of the RGCs at 12,24,and 48h after H_(2)O_(2)stimulation.The levels of nitric oxide,malondialdehyde,and glutathione in culture media were measured at these time points.Quantitative reverse transcription polymerase chain reaction(qRT-PCR)and Western blot were performed to observe the effects of ET on the messenger RNA and protein expression of inducible nitric oxide synthase(iNOS),nuclear factor erythroid 2-related factor 2(Nrf2),heme oxygenase 1(HO-1),glutathione peroxidase 1 and the level of conjugated acrolein in RGCs at 12,24,and 48h after H_(2)O_(2)stimulation and in the retina at 12h after optic nerve transection(ONT).RESULTS:The applications of 5 and 10μmol/L of ET significantly increased the viability of RGCs.Results from qRT-PCR indicated a decrease in the expression of iNOS and an increase in the expressions of Nrf2 and HO-1 in ETpretreated RGCs at 12,24 and 48h after H_(2)O_(2)stimulation,as well as in ET-treated retinas at 12h after ONT.Western blot analysis revealed a decrease in the expression of iNOS and levels of conjugated acrolein,along with an increase in the expressions of Nrf2 and HO-1 in ET-pretreated RGCs in vitro and ET-treated retinas in vivo.CONCLUSION:ET is a neuroprotective agent in primary cultured RGCs injured by H_(2)O_(2).The effect of ET is dosedependent with the greatest effect being at 10μmol/L.ET plays an antioxidant role by inhibiting iNOS,up-regulating Nrf2/HO-1,decreasing the production of acrolein,and increasing the scavenge of acrolein.展开更多
Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In thi...Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In this study,we elucidated the molecular mechanism for and D-A_(1) to alleviate ACR-stimulated IPEC-J2 cell damage.ACR slightly activated nuclear factor erythroid 2-related factor 2(Nrf2)signaling and its target genes,but this activation could not reduce intestine cell damage.A_(1) and D-A_(1) could alleviate ACR-induced cell damage,but the effect was abrogated in cells transiently transfected with Nrf2 small interfering RNA(siRNA).Further investigation confirmed that A_(1) and D-A_(1) interacted with Ketch-like ECH-associated protein 1(Keapl),which boosted the stabilization of Nrf2,subsequently promoted the translocation of Nrf2 into the nucleus,and further increased the expression of antioxidant proteins,thereby inhibiting glutathione(GSH)consumption,maintaining redox balance and eventually alleviating ACR-induced cell damage.Importantly,there was no difference between A_(1) and D-A_(1) treated groups,indicating that A_(1) can tolerate gastrointestinal digestion and may be a potential compound to limit the toxicity of ACR.展开更多
Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic ac...Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic activity and clinical application value.Herein,this work was conducted to investigate the protective effect of Pleurotus tuber-regium polysaccharide-protein complex funtionnalized SeNPs(PTR-SeNPs)against acetaminophen(APAP)-induced oxidative injure in HepG2 cells and C57BL/6J mouse liver.Further elucidation of the underlying molecular mechanism,in particular their modulation of Nrf2 signaling pathway was also performed.The results showed that PTR-SeNPs could significantly ameliorate APAP-induced oxidative injury as evidenced by a range of biochemical analysis,histopathological examination and immunoblotting study.PTR-SeNPs could hosphorylate and activate PKCδ,depress Keap1,and increase nuclear accumulation of Nrf2,resulting in upregulation of GCLC,GCLM,HO-1 and NQO-1 expression.Besides,PTR-SeNPs suppressed the biotransformation of APAP to generate intracellular ROS through CYP 2E1 inhibition,restoring the mitochondrial morphology.Furthermore,the protective effect of PTR-SeNPs against APAP induced hepatotoxicity was weakened as Nrf2 was depleted in vivo,indicating the pivotal role of Nrf2 signaling pathway in PTR-SeNPs mediated hepatoprotective efficacy.Being a potential hepatic protectant,PTR-SeNPs could serve as a new source of selenium supplement for health-promoting and biomedical applications.展开更多
This study examined the ability of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (β-PGG) to induce the expression of heme oxygenase-1 (HO-1) in the PC12 cells and its regulation in the PC12 cells.One week before treatment w...This study examined the ability of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (β-PGG) to induce the expression of heme oxygenase-1 (HO-1) in the PC12 cells and its regulation in the PC12 cells.One week before treatment with the drug,nerve growth factor (NGF) was added to the cultures at a final concentration of 50 ng/mL to induce neuronal differentiation.After drug treatment,HO-1 gene transcription was analyzed by reverse transcription polymerase chain reaction (RT-PCR).Expression of HO-1 and NF-E2-related factor2 (Nrf2) and activation of extracellular signal-regulated kinase (ERK) and Akt were detected by Western blotting.The viability of the PC12 cells treated with different medicines was examined by MTT assay.The oxidative stress in the PC12 cells was evaluated qualitatively and quantitatively by DCFH-DA.The results showed that β-PGG up-regulated HO-1 expression and this increased expression provided neuroprotection against MPP+-induced oxidative injury.Moreover,β-PGG induced Nrf2 nuclear translocation,which was found to be upstream of β-PGG-induced HO-1 expression,and the activation of ERK and Akt,a pathway that is involved in β-PGG-induced Nrf2 nuclear translocation,HO-1 expression and neuroprotection.In conclusion,β-PGG up-regulates HO-1 expression by stimulating Nrf2 nuclear translocation in an ERK-and Akt-dependent manner,and HO-1 expression by β-PGG may provide the PC12 cells with an acquired antioxidant defense capacity to survive the oxidative stress.展开更多
基金Deanship of Scientific Research at King Saud University,No.RG-1439-083.
文摘BACKGROUND Sinapic acid(SA)has been shown to have various pharmacological properties such as antioxidant,antifibrotic,anti-inflammatory,and anticancer activities.Its mechanism of action is dependent upon its ability to curb free radical production and protect against oxidative stress-induced tissue injuries.AIM To study the hepatoprotective effects of SA against lipopolysaccharide(LPS)/Dgalactosamine(D-GalN)-induced acute liver failure(ALF)in rats.METHODS Experimental ALF was induced with an intraperitoneal(i.p.)administration of 8μg LPS and 800 mg/kg D-GalN in normal saline.SA was administered orally once daily starting 7 d before LPS/D-GalN treatment.RESULTS Data showed that SA ameliorates acute liver dysfunction,decreases serum levels of alanine transaminase(ALT),and aspartate aminotransferase(AST),as well as malondialdehyde(MDA)and NO levels in ALF model rats.However,pretreatment with SA(20 mg/kg and 40 mg/kg)reduced nuclear factor kappalight-chain-enhancer of activated B cells(NF-κB)activation and levels of inflammatory cytokines(tumor necrosis factor-αand interleukin 6).Also,SA increased the activity of the nuclear factor erythroid-related factor 2/heme oxygenase-1(Nrf2/HO-1)signaling pathway.CONCLUSION In conclusion,SA offers significant protection against LPS/D-GalN-induced ALF in rats by upregulating Nrf2/HO-1 and downregulating NF-κB.
基金supported by the Independent Research Project of Fujian Academy of Traditional Chinese Medicine in China,No.2012fjzyyk-4the Natural Science Foundation of Fujian Province in China,No.2014J01340+1 种基金the Research Project of Fujian Provincial Health and Family Planning Commission,No.2014-ZQN-JC-32a grant from the Platform for Preclinical Studies of Traditional Chinese Medicine and Quality Control Engineering Technology Research Center of Fujian Province in China,No.2009Y2003
文摘Salidroside,the main active ingredient extracted from Rhodiola crenulata,has been shown to be neuroprotective in ischemic cerebral injury,but the underlying mechanism for this neuroprotection is poorly understood.In the current study,the neuroprotective effect of salidroside on cerebral ischemia-induced oxidative stress and the role of the nuclear factor erythroid 2-related factor 2(Nrf2)pathway was investigated in a rat model of middle cerebral artery occlusion.Salidroside(30 mg/kg)reduced infarct size,improved neurological function and histological changes,increased activity of superoxide dismutase and glutathione-S-transferase,and reduced malon-dialdehyde levels after cerebral ischemia and reperfusion.Furthermore,salidroside apparently increased Nrf2 and heme oxygenase-1 expression.These results suggest that salidroside exerts its neuroprotective effect against cerebral ischemia through anti-oxidant mechanisms and that activation of the Nrf2 pathway is involved.The Nrf2/antioxidant response element pathway may become a new therapeutic target for the treatment of ischemic stroke.
基金Supported by the Ministry of Science and Technology of China(No.2021ZD0203104)the Science and Technology Plan Project of Shaanxi Province of China(No.2022SF-497)Xi’an Medical University Doctoral Research Fund(No.2020DOC18).
文摘AIM:To determine whether etomidate(ET)has a protective effect on retinal ganglion cells(RGCs)injured with hydrogen peroxide(H_(2)O_(2))and to explore the potential mechanism underlying the antioxidative stress effect of ET.METHODS:Cultured RGCs were identified by double immunofluorescent labeling of microtubule-associated protein 2 and Thy1.1.An injury model of H_(2)O_(2)-induced RGCs oxidative stress was established in vitro.Cells were pretreated with different concentrations of ET(1,5,and 10μmol/L)for 4h,followed by further exposure to H_(2)O_(2)at 1000μmol/L.Cell counting kit 8 and Annexin V/propidium iodide assays were applied to detect the viabilities and apoptosis rates of the RGCs at 12,24,and 48h after H_(2)O_(2)stimulation.The levels of nitric oxide,malondialdehyde,and glutathione in culture media were measured at these time points.Quantitative reverse transcription polymerase chain reaction(qRT-PCR)and Western blot were performed to observe the effects of ET on the messenger RNA and protein expression of inducible nitric oxide synthase(iNOS),nuclear factor erythroid 2-related factor 2(Nrf2),heme oxygenase 1(HO-1),glutathione peroxidase 1 and the level of conjugated acrolein in RGCs at 12,24,and 48h after H_(2)O_(2)stimulation and in the retina at 12h after optic nerve transection(ONT).RESULTS:The applications of 5 and 10μmol/L of ET significantly increased the viability of RGCs.Results from qRT-PCR indicated a decrease in the expression of iNOS and an increase in the expressions of Nrf2 and HO-1 in ETpretreated RGCs at 12,24 and 48h after H_(2)O_(2)stimulation,as well as in ET-treated retinas at 12h after ONT.Western blot analysis revealed a decrease in the expression of iNOS and levels of conjugated acrolein,along with an increase in the expressions of Nrf2 and HO-1 in ET-pretreated RGCs in vitro and ET-treated retinas in vivo.CONCLUSION:ET is a neuroprotective agent in primary cultured RGCs injured by H_(2)O_(2).The effect of ET is dosedependent with the greatest effect being at 10μmol/L.ET plays an antioxidant role by inhibiting iNOS,up-regulating Nrf2/HO-1,decreasing the production of acrolein,and increasing the scavenge of acrolein.
基金supported by the project from National Natural Science Foundation of China (31671962)Fundamental Research Funds for the Central Universities (2662019PY034)。
文摘Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In this study,we elucidated the molecular mechanism for and D-A_(1) to alleviate ACR-stimulated IPEC-J2 cell damage.ACR slightly activated nuclear factor erythroid 2-related factor 2(Nrf2)signaling and its target genes,but this activation could not reduce intestine cell damage.A_(1) and D-A_(1) could alleviate ACR-induced cell damage,but the effect was abrogated in cells transiently transfected with Nrf2 small interfering RNA(siRNA).Further investigation confirmed that A_(1) and D-A_(1) interacted with Ketch-like ECH-associated protein 1(Keapl),which boosted the stabilization of Nrf2,subsequently promoted the translocation of Nrf2 into the nucleus,and further increased the expression of antioxidant proteins,thereby inhibiting glutathione(GSH)consumption,maintaining redox balance and eventually alleviating ACR-induced cell damage.Importantly,there was no difference between A_(1) and D-A_(1) treated groups,indicating that A_(1) can tolerate gastrointestinal digestion and may be a potential compound to limit the toxicity of ACR.
基金financially supported by National Natural Science Foundation of China(81700524)Natural Science Foundation of Fujian Province(2022J01866)from Fujian Provincial Department of Science and Technology+1 种基金Key Project of Fujian University of Traditional Chinese Medicine(X2021019)Collaborative Innovation and Platform Establishment Project of Department of Science and Technology of Guangdong Province(2019A050520003)。
文摘Selenium nanoparticles(SeNPs)have been demonstrated potential for use in diseases associated with oxidative stress.Functionalized SeNPs with lower toxicity and higher biocompatibility could bring better therapeutic activity and clinical application value.Herein,this work was conducted to investigate the protective effect of Pleurotus tuber-regium polysaccharide-protein complex funtionnalized SeNPs(PTR-SeNPs)against acetaminophen(APAP)-induced oxidative injure in HepG2 cells and C57BL/6J mouse liver.Further elucidation of the underlying molecular mechanism,in particular their modulation of Nrf2 signaling pathway was also performed.The results showed that PTR-SeNPs could significantly ameliorate APAP-induced oxidative injury as evidenced by a range of biochemical analysis,histopathological examination and immunoblotting study.PTR-SeNPs could hosphorylate and activate PKCδ,depress Keap1,and increase nuclear accumulation of Nrf2,resulting in upregulation of GCLC,GCLM,HO-1 and NQO-1 expression.Besides,PTR-SeNPs suppressed the biotransformation of APAP to generate intracellular ROS through CYP 2E1 inhibition,restoring the mitochondrial morphology.Furthermore,the protective effect of PTR-SeNPs against APAP induced hepatotoxicity was weakened as Nrf2 was depleted in vivo,indicating the pivotal role of Nrf2 signaling pathway in PTR-SeNPs mediated hepatoprotective efficacy.Being a potential hepatic protectant,PTR-SeNPs could serve as a new source of selenium supplement for health-promoting and biomedical applications.
基金supported by National 11th Five-Year Plan Research Foundation of China (No.2006BAI01A14)
文摘This study examined the ability of 1,2,3,4,6-penta-O-galloyl-β-D-glucose (β-PGG) to induce the expression of heme oxygenase-1 (HO-1) in the PC12 cells and its regulation in the PC12 cells.One week before treatment with the drug,nerve growth factor (NGF) was added to the cultures at a final concentration of 50 ng/mL to induce neuronal differentiation.After drug treatment,HO-1 gene transcription was analyzed by reverse transcription polymerase chain reaction (RT-PCR).Expression of HO-1 and NF-E2-related factor2 (Nrf2) and activation of extracellular signal-regulated kinase (ERK) and Akt were detected by Western blotting.The viability of the PC12 cells treated with different medicines was examined by MTT assay.The oxidative stress in the PC12 cells was evaluated qualitatively and quantitatively by DCFH-DA.The results showed that β-PGG up-regulated HO-1 expression and this increased expression provided neuroprotection against MPP+-induced oxidative injury.Moreover,β-PGG induced Nrf2 nuclear translocation,which was found to be upstream of β-PGG-induced HO-1 expression,and the activation of ERK and Akt,a pathway that is involved in β-PGG-induced Nrf2 nuclear translocation,HO-1 expression and neuroprotection.In conclusion,β-PGG up-regulates HO-1 expression by stimulating Nrf2 nuclear translocation in an ERK-and Akt-dependent manner,and HO-1 expression by β-PGG may provide the PC12 cells with an acquired antioxidant defense capacity to survive the oxidative stress.