The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi...The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.展开更多
Nuclear factor kappa B(NF-κB) is one of the best-characterized transcription factors playing important roles in many cellular responses to a large variety of stimuli,including inflammatory cytokines, phorbol esters, ...Nuclear factor kappa B(NF-κB) is one of the best-characterized transcription factors playing important roles in many cellular responses to a large variety of stimuli,including inflammatory cytokines, phorbol esters, growth factors, and bacterial and viral products. The aim of this study is to demonstrate NF-κB expression in the mouse cochlea and its enhancement in response to lipopolysaccharides(LPS) and kanamycin(KA) treatment. Methods KA treatment consisted of subcutaneous KA injections at 700 mg/kg twice a day with an eight-hour interval between the two injections for 3 or 7 days. For animals in the LPS treatment group, a single dose of 0.3 mg LPS dissolved in 0.2 ml sterile saline were injected into both bullae through the tympanic membrane and kept there for 3 hours. Animals in the control group received subcutaneous saline injection for 7 days. Following immmunohistochemichal processing with rabbit polyclonal anti-NF-κB p65 antibodies, cryosections of the cochlea were examined for expression of NF-κB p65 in various structures in the cochlea. Results NF-κB p65 expression, identified by presence of brown reaction products characteristic of DAB immunohistochemistry, was visible in the spiral ligament, spiral prominence, tectorial membrane(TM), spiral ganglion and nerve fibers. Relatively weak NF-κB p65 expression was also visualized in the organ of Corti. Within the organ of Corti, the inner hair cells(IHC), outer hair cells(OHC), inner pillar cells(IP), outer pillar cells (OP), Deiter’s cells(DC), and Boettcher’s cells exhibited stronger staining than the inner sulcus cells, Hensen’s cells(HC) and Claudius’cells. No NF-κB p65 expression was seen in the nucleus of the IHC and OHC. NF-κB p65 expression was increased in animals exposed to LPS or KA, demonstrating significant differences in the staining between control animals and LPS/KA-treated animals. NF-κB p65 expression was not significantly different between LPS treated and KA treated animals or between 3 and 7 days in KA-treated animals. Conclusion LPS and KA exposure increases expression of NF-κB p65 in the mouse cochlea.展开更多
Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, p...Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-~B in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans- dominant negative mutant of its upstream regulator IκBa, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro- gram in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.展开更多
AIM:To study the inhibition of nuclear factor kappa-B p65(NF-κB p65)antisense oligodeoxynucleotide(ASODN)on transdifferentiation of normal human lens epithelial cells induced by transforming growth factor-β2(T...AIM:To study the inhibition of nuclear factor kappa-B p65(NF-κB p65)antisense oligodeoxynucleotide(ASODN)on transdifferentiation of normal human lens epithelial cells induced by transforming growth factor-β2(TGF-β2).·M ETHODS:NF-κBp65ASODNand NF-κBp65missense oligodeoxynucleotide(MSODN)were designed and synthesized.Human lens epithelial cell line(HLE B-3)cells were prepared for study and divided into 7 groups.Control group was HLE B-3 cells cultured in dulbecco’s modified eagle medium(DMEM).T1,T2,and T3 group were HLE B-3 cells cultured in DMEM with 10 ng/m L TGF-β2 for 6h,12h,24h respectively.A+T group was HLE B-3 cells cultured with 10 ng/m L TGF-β2for 24h after transfected by NF-κB p65 ASODN for 24h.M+T group was HLE B-3 cells cultured with 10 ng/m L TGF-β2 for 24h after transfected by NF-κB p65 MSODN for 24h.The negative control group was HLE B-3 cells cultured with 10 ng/m L TGF-β2 for 24h after cultured with transfer agent(Hi Per Fect)for 24h.Cell morphology was observed at different time points using an inverted microscope.The expression of NF-κB p65 m RNA was detected with reverse transcription-polymerase chain reaction(RT-PCR),and the expression ofα-smooth muscle actin(α-SMA)protein was assayed with ELISA.·RESULTS:With the TGF-β2 stimulation prolongation,the expression of NF-κB p65 m RNA and a-SMA protein increased in T1,T2,T3 groups compared with the control group,and the difference was statistically significant(〈0.05).NF-κB p65 ASODN lowered the expression of NF-κB p65 m RNA andα-SMA protein induced by TGF-β2.NF-κB p65 MSODN and Hi Per Fect did not lower the expression of NF-κB p65 m RNA andα-SMA protein induced by TGF-β2.The difference between control group and A+T group was not statistically significant(〉0.05),but the difference among A+T group and other groups was statistically significant(〈0.05).·CONCLUSION:NF-κB p65 ASODN could lower the expression of NF-κB p65 m RNA andα-SMA protein induced by TGF-β2,and antagonized TGF-β2-induced transdifferentiation of HLE B-3.NF-κB p65ASODN could be used as a new biological therapeutic target of posterior capsular opacification.展开更多
Objective: To explore the underlying molecular mechanisms of cellular response to the challenge by 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of PC12 cells, an in vitro cell model for Parkinson’s disease, a...Objective: To explore the underlying molecular mechanisms of cellular response to the challenge by 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of PC12 cells, an in vitro cell model for Parkinson’s disease, and the effect of NF-κB activation on the protection of Parkinson’s disease by Isoflavone (I). Methods: PC12 cells were used to establish the cell model of Parkinson’s disease, and are divided into five groups: control group;MPP+ group;I (Isoflavone) + MPP+ group;I group;SN-50 + MPP+ group. The content of NF-κB in PC12 cells was determined by immunocytochemistry;The viability of PC12 cells after treated with cell-permeable NF-κB inhibitor SN-50 and cell viability were measured by MTT assay;the expression levels of NF-κB p65 in cytoplasm and nuclear fractions were evaluated by western blot analysis;the mRNA expression of NF-κB p65 was analyzed by in situ hybridization (ISH). Results: Compared with the control group, the protein of NF-κB p65 both in cytoplasm and in nuclei was significantly higher than in I + MPP+ and MPP+ groups;similarly, the mRNA expression level of NF-κB p65 gene was also significantly higher;moreover, the protein expression of NF-κB p65 was much lower in I group (P + group, the protein of NF-κB p65 was significantly lower in I + MPP+ group, the mRNA expression level of NF-κB p65 gene was also significantly lower, and the protein expression level of NF-κB p65 was much lower in I + MPP+ group (P + group (P > 0.05). Conclusion: NF-κB activation is essential to MPP+-induced apoptosis in PC12 cells;but Isoflavone can inhibit the cell damage to some extent to execute its protective function, which may be involved in nigral neurodegeneration in patients with Parkinson’s disease.展开更多
Background:G-protein coupled receptors(GPCRs)are recognized as attractive targets for drug therapy.However,it remains poorly understood how GPCRs,except for a few chemokine receptors,regulate the progression of liver ...Background:G-protein coupled receptors(GPCRs)are recognized as attractive targets for drug therapy.However,it remains poorly understood how GPCRs,except for a few chemokine receptors,regulate the progression of liver fibrosis.Here,we aimed to reveal the role of GPR65,a proton-sensing receptor,in liver fibrosis and to elucidate the underlying mechanism.Methods:The expression level of GPR65 was evaluated in both human and mouse fibrotic livers.Furthermore,Gpr65-deficient mice were treated with either bile duct ligation(BDL)for 21 d or carbon tetrachloride(CCl4)for 8 weeks to investigate the role of GPR65 in liver fibrosis.A combination of experimental approaches,including Western blotting,quantitative real-time reverse transcription-polymerase chain reaction(qRT-PCR),and enzyme-linked immunosorbent assay(ELISA),confocal microscopy and rescue studies,were used to explore the underlying mechanisms of GPR65’s action in liver fibrosis.Additionally,the therapeutic potential of GPR65 inhibitor in the development of liver fibrosis was investigated.Results:We found that hepatic macrophage(HM)-enriched GPR65 was upregulated in both human and mouse fibrotic livers.Moreover,knockout of Gpr65 significantly alleviated BDL-and CCl4-induced liver inflammation,injury and fibrosis in vivo,and mouse bone marrow transplantation(BMT)experiments further demonstrated that the protective effect of Gpr65knockout is primarily mediated by bone marrow-derived macrophages(BMMs).Additionally,in vitro data demonstrated that Gpr65 silencing and GPR65 antagonist inhibited,while GPR65 overexpression and application of GPR65 endogenous and exogenous agonists enhanced the expression and release of tumor necrosis factor-α(TNF-α),interleukin-6(IL-6)and transforming growth factor-β(TGF-β),all of which subsequently promoted the activation of hepatic stellate cells(HSCs)and the damage of hepatocytes(HCs).Mechanistically,GPR65 overexpression,the acidic pH and GPR65 exogenous agonist induced up-regulation of TNF-αand IL-6 via the Gαq-Ca^(2+)-JNK/NF-κB pathways,while promoted the expression of TGF-βthrough the Gαq-Ca^(2+)-MLK3-MKK7-JNK pathway.Notably,pharmacological GPR65 inhibition retarded the development of inflammation,HCs injury and fibrosis invivo.Conclusions:GPR65 is a major regulator that modulates the progression of liver fibrosis.Thus,targeting GPR65 could be an effective therapeutic strategy for the prevention of liver fibrosis.展开更多
Objective To investigate the mechanisms of catgut implantation at acupoints on ulcerative colitis. Methods Eighteen SD rats were randomly divided into a normal control group (NC), a model group (MO) and a catgut i...Objective To investigate the mechanisms of catgut implantation at acupoints on ulcerative colitis. Methods Eighteen SD rats were randomly divided into a normal control group (NC), a model group (MO) and a catgut implantation group (CI) with 6 rats in each group. Animals in group MO and group CI were treated by trinitro-benzene-sulfonic acid (TNBS) to establish model with colitis. No other treatment was given to the rats in group MO, but catgut was implanted at "Shàngjùxū" (上 巨虚 ST 37), "Tiānshū" (天枢 ST 25) and "Dàchángshū" (大肠俞 BL 25) in the rats in group CI. The symptoms of diarrhea and bloody stool, and changes in histopathology were detected 15 days after the treatment. Expressions of splenic lymphocyte nuclear factor κB p65(NF-κB p65)and correlated signaling molecules(β2AR)were detected by the western blot method. Results Diarrhea and mucus bloody purulent stool were soon controlled, and mucous injures were obviously improved in group CI. The NF-κB p65 value of splenic lymphocytes was signifi cantly increased (P0.01) and expression of β2AR remarkably reduced in group MO (P0.01), compared with group NC. But, the NF-κB p65 value was significantly decreased (P0.01) and expression of β2AR remarkably increased in group CI (P 0.01) , compared with group MO. Conclusion Catgut implantation at acupoints is obviously effective in treating experimental colitis. Modulation of NF-κB p65 and the correlated signaling molecules β2AR may be involved in the mechanisms.展开更多
AIM:To investigate whether curcumin could attenuate nuclear factor(NF)-κB p65 expression and macromolecular leakage in the gastric mucosa of Helicobacter pylori(H.pylori)-infected rats.METHODS:Twenty-five male Spragu...AIM:To investigate whether curcumin could attenuate nuclear factor(NF)-κB p65 expression and macromolecular leakage in the gastric mucosa of Helicobacter pylori(H.pylori)-infected rats.METHODS:Twenty-five male Sprague-Dawley rats were equally divided into five groups:control rats(Control),control rats supplemented with 600 mg/kg curcumin,H.pylori-infected rats(Hp),H.pylori-infected rats supplemented with 200 mg/kg curcumin(Hp + curIn H.pylori-infected groups,rats were inoculated with H.pylori suspension twice a day at an interval of 4 h for 3 d.Two weeks later,200 or 600 mg/kg curcumin was given once daily to curcuminsupplemented groups for 7 d.On the day of the experiment,macromolecular leakage in gastric mucosa was examined by intravital fluorescence microscopy.The stomach tissue was removed to examine NF-κB p65 expression in gastric epithelial cells by immunohistochemistry.RESULTS:The expression of NF-κB p65 in gastric epithelial cells and the macromolecular leakage from gastric mucosal microcirculation significantly increased in the Hp group compared with the Control group.The percentages of NF-κB p65 immunoreactive cells in Control and Hp groups were 10.72% ± 2.10% vs 16.02% ± 2.98%,P = 0.004,respectively.The percentages of macromolecular leakage in Control and Hp groups were 10.69% ± 1.43% vs 15.41% ± 2.83%,P = 0.001,respectively.Curcumin supplementation in Hp + cur-CONCLUSION:H.pylori-induced gastric inflammation in rats is associated with increased NF-κB activation and macromolecular leakage which can be reduced by curcumin supplementation.展开更多
AIM:To investigate the expression of toll-like receptor(TLR) 4,nuclear factor-κB(NF-κB) p65 and hypoxiainducible transcription factor 1α(HIF-1α) in pancreatic ductal adenocarcinoma and their clinical significance....AIM:To investigate the expression of toll-like receptor(TLR) 4,nuclear factor-κB(NF-κB) p65 and hypoxiainducible transcription factor 1α(HIF-1α) in pancreatic ductal adenocarcinoma and their clinical significance.METHODS:The mRNA of TLR4 and HIF-1α were investigated by real-time polymerase chain reaction in 30 cases of pancreatic ductal adenocarcinoma and its adjacent tissues,and expression of TLR4,NF-κB p65 and HIF-1α protein were detected by immunohistochemistry in 65 cases of pancreatic ductal adenocarcinoma tissues and 38 cases of corresponding adjacent tissues.The relationship between TLR4 or HIF-1α and pathologic features,as well as the association between TLR4 and HIF-1α,were also analyzed.Kaplan-Meier method was used to assess the impact of expression of TLR4 and HIF-1α on survival of patients with pancreatic cancer.RESULTS:The relative quantif ication of TLR4 and HIF-1α mRNA in tumor tissues was 0.81±0.10 and 0.87±0.11,respectively,signif icantly higher than that in adjacent tissues(0.81±0.10 vs 0.70±0.16,P=0.002;0.87±0.11 vs 0.68±0.13,P=0.000).The protein expression of TLR4,NF-κB p65 and HIF-1α in tumor tissues was 69.20%,66.15% and 70.80%,respectively,being signif icantly higher than that in adjacent normal tissues(69.20% vs 39.50%,P=0.003;66.15% vs 31.58%,P=0.001;70.80% vs 36.80%,P=0.001).There was no signif icant correlation between TLR4 or HIF-1α expression and the age,gender,tumor location,the degree of tumor differentiation in the patients(P>0.05).However,there was signif icant correlation between the expression of TLR4 or HIF-1α and tumor size,lymph node metastasis,venous invasion and clinical staging(P<0.05).The expression of TLR4 and HIF-1α had a signif icant impact on survival of patients with pancreatic adenocarcinoma.CONCLUSION:TLR4,NF-κB p65 and HIF-1α are overexpressed in pancreatic adenocarcinoma,TLR4 may be partly involved in up-regulating HIF-1α,and both synergestically promote development of pancreatic adenocarcinoma.展开更多
BACKGROUND:Sepsis-induced myocardial injury is one of the major predictors of morbidity and mortality of sepsis.The cytoprotective function of erythropoietin(EPO) has been discovered and extensively studied.However,th...BACKGROUND:Sepsis-induced myocardial injury is one of the major predictors of morbidity and mortality of sepsis.The cytoprotective function of erythropoietin(EPO) has been discovered and extensively studied.However,the cardioprotective effects of EPO on sepsis-induced myocardial injury in the rat sepsis model has not been reported.METHODS:The rat models of sepsis were produced by cecal ligation and perforation(CLP)surgery.Rats were randomly(random number) assigned to one of three groups(n=8 for each group):sham group,CLP group and EPO group(1000 lU/kg erythropoietin).Arterial blood was withdrawn at3,6,12,and 24 hours after CLP.cTnl,BNP,CK-MB,LDH,AST,TNF-a,IL-6,IL-10,and CRP were tested by the ELISA assay.Changes of hemodynamic parameters were recorded at 3,6,12,24 hours after the surgery.Histological diagnosis was made by hematoxylin and eosin.Flow cytometry was performed to examine cell apoptosis,myocardium mitochondrial inner membrane potential,and NF-κB(p65).Survival rate at 7 days after CLP was recorded.RESULTS:In the CLP group,myocardial enzyme index and inflammatory index increased at3,6,12 and 24 hours after CLP compared with the sham group,and EPO significantly blocked the increase.Compared with the CLP group,EPO significantly improved LVSP,LV +dpldt_(max) LV-dp/dt_(min),and decreased LVEDP at different time.EPO blocked the reduction of mitochondrial transmembrane potential,suppressed the cardiomyocyte apoptosis,inhibited the activation of NF-κB,and reduced the production of proinflmmatory cytokines.No difference in the survival rate at 7 days was observed between the CLP group and the EPO group.CONCLUSION:Exogenous EPO has cardioprotective effects on sepsis-induced myocardial injury.展开更多
An enriched environment is used as a behavio ral intervention therapy that applies sensory,motor,and social stimulation,and has been used in basic and clinical research of va rious neurological diseases.In this study,...An enriched environment is used as a behavio ral intervention therapy that applies sensory,motor,and social stimulation,and has been used in basic and clinical research of va rious neurological diseases.In this study,we established mouse models of photothrombotic stroke and,24 hours later,raised them in a standard,enriched,or isolated environment for 4 weeks.Compared with the mice raised in a standard environment,the cognitive function of mice raised in an enriched environment was better and the pathological damage in the hippocampal CA1 region was remarkably alleviated.Furthermore,protein expression levels of tumor necrosis factor receptor-associated factor 6,nuclear factorκB p65,interleukin-6,and tumor necrosis factorα,and the mRNA expression level of tumor necrosis factor receptor-associated factor 6 were greatly lower,while the expression level of miR-146a-5p was higher.Compared with the mice raised in a standard environment,changes in these indices in mice raised in an isolated environment were opposite to mice raised in an enriched environment.These findings suggest that different living environments affect the hippocampal inflammatory response and cognitive function in a mouse model of stro ke.An enriched environment can improve cognitive function following stroke through up-regulation of miR-146a-5p expression and a reduction in the inflammatory response.展开更多
Oxygen free radical damage is regarded as a direct or indirect common pathway associated with diabetic neuropathy and is the main cause of complications in peripheral neuropathies. We speculate that Jiaweibugan decoct...Oxygen free radical damage is regarded as a direct or indirect common pathway associated with diabetic neuropathy and is the main cause of complications in peripheral neuropathies. We speculate that Jiaweibugan decoction has a significant effect in treating diabetic peripheral neuropathy through an anti-oxidative stress pathway. In this study, a diabetic rat model was established by intraperitoneal injection of streptozotocin. Rats were treated with Jiaweibugan decoction via intragastric administration. The levels of malondialdehyde and glutathione, which are indirect indexes of oxidative stress, in serum were determined using a colorimetric method. The expression levels of nuclear factor kappa B p65 mRNA and p38 mitogen-activated protein kinase, which are oxidative stress associated factors, in the dorsal root ganglion of spinal $4-6 segments were evaluated by reverse-transcriptase polymerase chain reaction and immunohistochemistry. Results showed that, Jiaweibugan decoction significantly ameliorated motor nerve conduction velocity in diabetic rats, effectively decreased malondialdehyde levels in serum and the expression of nuclear factor kappa B p65 mRNA and p38 mitogen-activated protein kinase mRNA in the dorsa root ganglion, and increased glutathione levels in serum. Therefore, our experimental findings indicate that Jiaweibugan decoction plays an anti-oxidative stress role in the diabetic peripheral neuropathy process, which has a protective effect on peripheral nerve injury.展开更多
文摘The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease.
文摘Nuclear factor kappa B(NF-κB) is one of the best-characterized transcription factors playing important roles in many cellular responses to a large variety of stimuli,including inflammatory cytokines, phorbol esters, growth factors, and bacterial and viral products. The aim of this study is to demonstrate NF-κB expression in the mouse cochlea and its enhancement in response to lipopolysaccharides(LPS) and kanamycin(KA) treatment. Methods KA treatment consisted of subcutaneous KA injections at 700 mg/kg twice a day with an eight-hour interval between the two injections for 3 or 7 days. For animals in the LPS treatment group, a single dose of 0.3 mg LPS dissolved in 0.2 ml sterile saline were injected into both bullae through the tympanic membrane and kept there for 3 hours. Animals in the control group received subcutaneous saline injection for 7 days. Following immmunohistochemichal processing with rabbit polyclonal anti-NF-κB p65 antibodies, cryosections of the cochlea were examined for expression of NF-κB p65 in various structures in the cochlea. Results NF-κB p65 expression, identified by presence of brown reaction products characteristic of DAB immunohistochemistry, was visible in the spiral ligament, spiral prominence, tectorial membrane(TM), spiral ganglion and nerve fibers. Relatively weak NF-κB p65 expression was also visualized in the organ of Corti. Within the organ of Corti, the inner hair cells(IHC), outer hair cells(OHC), inner pillar cells(IP), outer pillar cells (OP), Deiter’s cells(DC), and Boettcher’s cells exhibited stronger staining than the inner sulcus cells, Hensen’s cells(HC) and Claudius’cells. No NF-κB p65 expression was seen in the nucleus of the IHC and OHC. NF-κB p65 expression was increased in animals exposed to LPS or KA, demonstrating significant differences in the staining between control animals and LPS/KA-treated animals. NF-κB p65 expression was not significantly different between LPS treated and KA treated animals or between 3 and 7 days in KA-treated animals. Conclusion LPS and KA exposure increases expression of NF-κB p65 in the mouse cochlea.
基金supported by the Leibniz Association,Germany,and the VELUX Foundation,Switzerland
文摘Activation of nuclear factor kappa B (NF-κB) is a hallmark of various central nervous system (CNS) pathologies. Neuron-specific inhibition of its transcriptional activator subunit RelA, also referred to as p65, promotes neuronal survival under a range of conditions, i.e., for ischemic or excitotoxic insults. In macro- and microglial cells, post-lesional activation of NF-κB triggers a growth-permissive program which contributes to neural tissue inflammation, scar formation, and the expression of axonal growth inhibitors. Intriguingly, inhibition of such inducible NF-~B in the neuro-glial compartment, i.e., by genetic ablation of RelA or overexpression of a trans- dominant negative mutant of its upstream regulator IκBa, significantly enhances functional recovery and promotes axonal regeneration in the mature CNS. By contrast, depletion of the NF-κB subunit p50, which lacks transcriptional activator function and acts as a transcriptional repressor on its own, causes precocious neuronal loss and exacerbates axonal degeneration in the lesioned brain. Collectively, the data imply that NF-κB orchestrates a multicellular pro- gram in which κB-dependent gene expression establishes a growth-repulsive terrain within the post-lesioned brain that limits structural regeneration of neuronal circuits. Considering these subunit-specific functions, interference with the NF-κB pathway might hold clinical potentials to improve functional restoration following traumatic CNS injury.
基金Supported by the Outstanding Young Medical Personnel of Qingdao City
文摘AIM:To study the inhibition of nuclear factor kappa-B p65(NF-κB p65)antisense oligodeoxynucleotide(ASODN)on transdifferentiation of normal human lens epithelial cells induced by transforming growth factor-β2(TGF-β2).·M ETHODS:NF-κBp65ASODNand NF-κBp65missense oligodeoxynucleotide(MSODN)were designed and synthesized.Human lens epithelial cell line(HLE B-3)cells were prepared for study and divided into 7 groups.Control group was HLE B-3 cells cultured in dulbecco’s modified eagle medium(DMEM).T1,T2,and T3 group were HLE B-3 cells cultured in DMEM with 10 ng/m L TGF-β2 for 6h,12h,24h respectively.A+T group was HLE B-3 cells cultured with 10 ng/m L TGF-β2for 24h after transfected by NF-κB p65 ASODN for 24h.M+T group was HLE B-3 cells cultured with 10 ng/m L TGF-β2 for 24h after transfected by NF-κB p65 MSODN for 24h.The negative control group was HLE B-3 cells cultured with 10 ng/m L TGF-β2 for 24h after cultured with transfer agent(Hi Per Fect)for 24h.Cell morphology was observed at different time points using an inverted microscope.The expression of NF-κB p65 m RNA was detected with reverse transcription-polymerase chain reaction(RT-PCR),and the expression ofα-smooth muscle actin(α-SMA)protein was assayed with ELISA.·RESULTS:With the TGF-β2 stimulation prolongation,the expression of NF-κB p65 m RNA and a-SMA protein increased in T1,T2,T3 groups compared with the control group,and the difference was statistically significant(〈0.05).NF-κB p65 ASODN lowered the expression of NF-κB p65 m RNA andα-SMA protein induced by TGF-β2.NF-κB p65 MSODN and Hi Per Fect did not lower the expression of NF-κB p65 m RNA andα-SMA protein induced by TGF-β2.The difference between control group and A+T group was not statistically significant(〉0.05),but the difference among A+T group and other groups was statistically significant(〈0.05).·CONCLUSION:NF-κB p65 ASODN could lower the expression of NF-κB p65 m RNA andα-SMA protein induced by TGF-β2,and antagonized TGF-β2-induced transdifferentiation of HLE B-3.NF-κB p65ASODN could be used as a new biological therapeutic target of posterior capsular opacification.
文摘Objective: To explore the underlying molecular mechanisms of cellular response to the challenge by 1-methyl-4-phenylpyridinium (MPP+)-induced apoptosis of PC12 cells, an in vitro cell model for Parkinson’s disease, and the effect of NF-κB activation on the protection of Parkinson’s disease by Isoflavone (I). Methods: PC12 cells were used to establish the cell model of Parkinson’s disease, and are divided into five groups: control group;MPP+ group;I (Isoflavone) + MPP+ group;I group;SN-50 + MPP+ group. The content of NF-κB in PC12 cells was determined by immunocytochemistry;The viability of PC12 cells after treated with cell-permeable NF-κB inhibitor SN-50 and cell viability were measured by MTT assay;the expression levels of NF-κB p65 in cytoplasm and nuclear fractions were evaluated by western blot analysis;the mRNA expression of NF-κB p65 was analyzed by in situ hybridization (ISH). Results: Compared with the control group, the protein of NF-κB p65 both in cytoplasm and in nuclei was significantly higher than in I + MPP+ and MPP+ groups;similarly, the mRNA expression level of NF-κB p65 gene was also significantly higher;moreover, the protein expression of NF-κB p65 was much lower in I group (P + group, the protein of NF-κB p65 was significantly lower in I + MPP+ group, the mRNA expression level of NF-κB p65 gene was also significantly lower, and the protein expression level of NF-κB p65 was much lower in I + MPP+ group (P + group (P > 0.05). Conclusion: NF-κB activation is essential to MPP+-induced apoptosis in PC12 cells;but Isoflavone can inhibit the cell damage to some extent to execute its protective function, which may be involved in nigral neurodegeneration in patients with Parkinson’s disease.
基金This work was supported by the National Natural Science Foundation of China(32171125,81971331 and 82170630).
文摘Background:G-protein coupled receptors(GPCRs)are recognized as attractive targets for drug therapy.However,it remains poorly understood how GPCRs,except for a few chemokine receptors,regulate the progression of liver fibrosis.Here,we aimed to reveal the role of GPR65,a proton-sensing receptor,in liver fibrosis and to elucidate the underlying mechanism.Methods:The expression level of GPR65 was evaluated in both human and mouse fibrotic livers.Furthermore,Gpr65-deficient mice were treated with either bile duct ligation(BDL)for 21 d or carbon tetrachloride(CCl4)for 8 weeks to investigate the role of GPR65 in liver fibrosis.A combination of experimental approaches,including Western blotting,quantitative real-time reverse transcription-polymerase chain reaction(qRT-PCR),and enzyme-linked immunosorbent assay(ELISA),confocal microscopy and rescue studies,were used to explore the underlying mechanisms of GPR65’s action in liver fibrosis.Additionally,the therapeutic potential of GPR65 inhibitor in the development of liver fibrosis was investigated.Results:We found that hepatic macrophage(HM)-enriched GPR65 was upregulated in both human and mouse fibrotic livers.Moreover,knockout of Gpr65 significantly alleviated BDL-and CCl4-induced liver inflammation,injury and fibrosis in vivo,and mouse bone marrow transplantation(BMT)experiments further demonstrated that the protective effect of Gpr65knockout is primarily mediated by bone marrow-derived macrophages(BMMs).Additionally,in vitro data demonstrated that Gpr65 silencing and GPR65 antagonist inhibited,while GPR65 overexpression and application of GPR65 endogenous and exogenous agonists enhanced the expression and release of tumor necrosis factor-α(TNF-α),interleukin-6(IL-6)and transforming growth factor-β(TGF-β),all of which subsequently promoted the activation of hepatic stellate cells(HSCs)and the damage of hepatocytes(HCs).Mechanistically,GPR65 overexpression,the acidic pH and GPR65 exogenous agonist induced up-regulation of TNF-αand IL-6 via the Gαq-Ca^(2+)-JNK/NF-κB pathways,while promoted the expression of TGF-βthrough the Gαq-Ca^(2+)-MLK3-MKK7-JNK pathway.Notably,pharmacological GPR65 inhibition retarded the development of inflammation,HCs injury and fibrosis invivo.Conclusions:GPR65 is a major regulator that modulates the progression of liver fibrosis.Thus,targeting GPR65 could be an effective therapeutic strategy for the prevention of liver fibrosis.
基金Supported by the National Scientific Foundation:30772878
文摘Objective To investigate the mechanisms of catgut implantation at acupoints on ulcerative colitis. Methods Eighteen SD rats were randomly divided into a normal control group (NC), a model group (MO) and a catgut implantation group (CI) with 6 rats in each group. Animals in group MO and group CI were treated by trinitro-benzene-sulfonic acid (TNBS) to establish model with colitis. No other treatment was given to the rats in group MO, but catgut was implanted at "Shàngjùxū" (上 巨虚 ST 37), "Tiānshū" (天枢 ST 25) and "Dàchángshū" (大肠俞 BL 25) in the rats in group CI. The symptoms of diarrhea and bloody stool, and changes in histopathology were detected 15 days after the treatment. Expressions of splenic lymphocyte nuclear factor κB p65(NF-κB p65)and correlated signaling molecules(β2AR)were detected by the western blot method. Results Diarrhea and mucus bloody purulent stool were soon controlled, and mucous injures were obviously improved in group CI. The NF-κB p65 value of splenic lymphocytes was signifi cantly increased (P0.01) and expression of β2AR remarkably reduced in group MO (P0.01), compared with group NC. But, the NF-κB p65 value was significantly decreased (P0.01) and expression of β2AR remarkably increased in group CI (P 0.01) , compared with group MO. Conclusion Catgut implantation at acupoints is obviously effective in treating experimental colitis. Modulation of NF-κB p65 and the correlated signaling molecules β2AR may be involved in the mechanisms.
基金Supported by Thailand Research fund (code RMU 4980032)Graduate Thesis Grant,Graduate School,Chulalongkorn University,Thailand
文摘AIM:To investigate whether curcumin could attenuate nuclear factor(NF)-κB p65 expression and macromolecular leakage in the gastric mucosa of Helicobacter pylori(H.pylori)-infected rats.METHODS:Twenty-five male Sprague-Dawley rats were equally divided into five groups:control rats(Control),control rats supplemented with 600 mg/kg curcumin,H.pylori-infected rats(Hp),H.pylori-infected rats supplemented with 200 mg/kg curcumin(Hp + curIn H.pylori-infected groups,rats were inoculated with H.pylori suspension twice a day at an interval of 4 h for 3 d.Two weeks later,200 or 600 mg/kg curcumin was given once daily to curcuminsupplemented groups for 7 d.On the day of the experiment,macromolecular leakage in gastric mucosa was examined by intravital fluorescence microscopy.The stomach tissue was removed to examine NF-κB p65 expression in gastric epithelial cells by immunohistochemistry.RESULTS:The expression of NF-κB p65 in gastric epithelial cells and the macromolecular leakage from gastric mucosal microcirculation significantly increased in the Hp group compared with the Control group.The percentages of NF-κB p65 immunoreactive cells in Control and Hp groups were 10.72% ± 2.10% vs 16.02% ± 2.98%,P = 0.004,respectively.The percentages of macromolecular leakage in Control and Hp groups were 10.69% ± 1.43% vs 15.41% ± 2.83%,P = 0.001,respectively.Curcumin supplementation in Hp + cur-CONCLUSION:H.pylori-induced gastric inflammation in rats is associated with increased NF-κB activation and macromolecular leakage which can be reduced by curcumin supplementation.
基金Supported by Grants from the National Natural Science Foundation of China, No 30972898
文摘AIM:To investigate the expression of toll-like receptor(TLR) 4,nuclear factor-κB(NF-κB) p65 and hypoxiainducible transcription factor 1α(HIF-1α) in pancreatic ductal adenocarcinoma and their clinical significance.METHODS:The mRNA of TLR4 and HIF-1α were investigated by real-time polymerase chain reaction in 30 cases of pancreatic ductal adenocarcinoma and its adjacent tissues,and expression of TLR4,NF-κB p65 and HIF-1α protein were detected by immunohistochemistry in 65 cases of pancreatic ductal adenocarcinoma tissues and 38 cases of corresponding adjacent tissues.The relationship between TLR4 or HIF-1α and pathologic features,as well as the association between TLR4 and HIF-1α,were also analyzed.Kaplan-Meier method was used to assess the impact of expression of TLR4 and HIF-1α on survival of patients with pancreatic cancer.RESULTS:The relative quantif ication of TLR4 and HIF-1α mRNA in tumor tissues was 0.81±0.10 and 0.87±0.11,respectively,signif icantly higher than that in adjacent tissues(0.81±0.10 vs 0.70±0.16,P=0.002;0.87±0.11 vs 0.68±0.13,P=0.000).The protein expression of TLR4,NF-κB p65 and HIF-1α in tumor tissues was 69.20%,66.15% and 70.80%,respectively,being signif icantly higher than that in adjacent normal tissues(69.20% vs 39.50%,P=0.003;66.15% vs 31.58%,P=0.001;70.80% vs 36.80%,P=0.001).There was no signif icant correlation between TLR4 or HIF-1α expression and the age,gender,tumor location,the degree of tumor differentiation in the patients(P>0.05).However,there was signif icant correlation between the expression of TLR4 or HIF-1α and tumor size,lymph node metastasis,venous invasion and clinical staging(P<0.05).The expression of TLR4 and HIF-1α had a signif icant impact on survival of patients with pancreatic adenocarcinoma.CONCLUSION:TLR4,NF-κB p65 and HIF-1α are overexpressed in pancreatic adenocarcinoma,TLR4 may be partly involved in up-regulating HIF-1α,and both synergestically promote development of pancreatic adenocarcinoma.
基金supported by a grant from the National Natural Science Foundation of China(81070122)
文摘BACKGROUND:Sepsis-induced myocardial injury is one of the major predictors of morbidity and mortality of sepsis.The cytoprotective function of erythropoietin(EPO) has been discovered and extensively studied.However,the cardioprotective effects of EPO on sepsis-induced myocardial injury in the rat sepsis model has not been reported.METHODS:The rat models of sepsis were produced by cecal ligation and perforation(CLP)surgery.Rats were randomly(random number) assigned to one of three groups(n=8 for each group):sham group,CLP group and EPO group(1000 lU/kg erythropoietin).Arterial blood was withdrawn at3,6,12,and 24 hours after CLP.cTnl,BNP,CK-MB,LDH,AST,TNF-a,IL-6,IL-10,and CRP were tested by the ELISA assay.Changes of hemodynamic parameters were recorded at 3,6,12,24 hours after the surgery.Histological diagnosis was made by hematoxylin and eosin.Flow cytometry was performed to examine cell apoptosis,myocardium mitochondrial inner membrane potential,and NF-κB(p65).Survival rate at 7 days after CLP was recorded.RESULTS:In the CLP group,myocardial enzyme index and inflammatory index increased at3,6,12 and 24 hours after CLP compared with the sham group,and EPO significantly blocked the increase.Compared with the CLP group,EPO significantly improved LVSP,LV +dpldt_(max) LV-dp/dt_(min),and decreased LVEDP at different time.EPO blocked the reduction of mitochondrial transmembrane potential,suppressed the cardiomyocyte apoptosis,inhibited the activation of NF-κB,and reduced the production of proinflmmatory cytokines.No difference in the survival rate at 7 days was observed between the CLP group and the EPO group.CONCLUSION:Exogenous EPO has cardioprotective effects on sepsis-induced myocardial injury.
基金financially the National Natural Science Foundation of China,No.82072533the China Postdoctoral Science Foundation,No.2017M621675+1 种基金Huxin Foundation of Jiangsu Key Laboratory of Zoonosis of China,No.HX2003Yangzhou Science and Technology Development Plan Project of China,No.YZ2020201(all to XW)。
文摘An enriched environment is used as a behavio ral intervention therapy that applies sensory,motor,and social stimulation,and has been used in basic and clinical research of va rious neurological diseases.In this study,we established mouse models of photothrombotic stroke and,24 hours later,raised them in a standard,enriched,or isolated environment for 4 weeks.Compared with the mice raised in a standard environment,the cognitive function of mice raised in an enriched environment was better and the pathological damage in the hippocampal CA1 region was remarkably alleviated.Furthermore,protein expression levels of tumor necrosis factor receptor-associated factor 6,nuclear factorκB p65,interleukin-6,and tumor necrosis factorα,and the mRNA expression level of tumor necrosis factor receptor-associated factor 6 were greatly lower,while the expression level of miR-146a-5p was higher.Compared with the mice raised in a standard environment,changes in these indices in mice raised in an isolated environment were opposite to mice raised in an enriched environment.These findings suggest that different living environments affect the hippocampal inflammatory response and cognitive function in a mouse model of stro ke.An enriched environment can improve cognitive function following stroke through up-regulation of miR-146a-5p expression and a reduction in the inflammatory response.
基金supported by the Scientific Research Foundation of Traditional Chinese Medicine of Hunan Provincial Health Bureau,No.06202
文摘Oxygen free radical damage is regarded as a direct or indirect common pathway associated with diabetic neuropathy and is the main cause of complications in peripheral neuropathies. We speculate that Jiaweibugan decoction has a significant effect in treating diabetic peripheral neuropathy through an anti-oxidative stress pathway. In this study, a diabetic rat model was established by intraperitoneal injection of streptozotocin. Rats were treated with Jiaweibugan decoction via intragastric administration. The levels of malondialdehyde and glutathione, which are indirect indexes of oxidative stress, in serum were determined using a colorimetric method. The expression levels of nuclear factor kappa B p65 mRNA and p38 mitogen-activated protein kinase, which are oxidative stress associated factors, in the dorsal root ganglion of spinal $4-6 segments were evaluated by reverse-transcriptase polymerase chain reaction and immunohistochemistry. Results showed that, Jiaweibugan decoction significantly ameliorated motor nerve conduction velocity in diabetic rats, effectively decreased malondialdehyde levels in serum and the expression of nuclear factor kappa B p65 mRNA and p38 mitogen-activated protein kinase mRNA in the dorsa root ganglion, and increased glutathione levels in serum. Therefore, our experimental findings indicate that Jiaweibugan decoction plays an anti-oxidative stress role in the diabetic peripheral neuropathy process, which has a protective effect on peripheral nerve injury.