In this paper, the hyperspherical harmonics used for solving the three and four body problems in nuclear physics are given. The equations of the adiabatic approximation to hyperspherical harmonic method are derived. S...In this paper, the hyperspherical harmonics used for solving the three and four body problems in nuclear physics are given. The equations of the adiabatic approximation to hyperspherical harmonic method are derived. Some properties of the hypernuclous Heare given as the illustrative example of the application of this method.展开更多
DNA computation (DNAC) has been proposed to solve the satisfiability (SAT) problem due to operations in parallel on extremely large numbers of strands. This paper attempts to treat the DNA-based bio-molecular solu...DNA computation (DNAC) has been proposed to solve the satisfiability (SAT) problem due to operations in parallel on extremely large numbers of strands. This paper attempts to treat the DNA-based bio-molecular solution for the SAT problem from the quantum mechanical perspective with a purpose to explore the relationship between DNAC and quantum computation (QC). To achieve this goal, it first builds up the correspondence of operations between QC and DNAC. Then it gives an example for the case of two variables and three clauses for details of this theory. It also demonstrates a three-qubit experiment for solving the simplest SAT problem with a single variable on a liquid-state nuclear magnetic resonance ensemble to verify this theory. Some discussions are made for the potential application and for further exploration of the present work.展开更多
The coupling of the sun's gravitational field with processes of diffusion and convection exerts a significant influence on the dynamical behavior of the core 3He nuclear reaction-diffusion system. Stability analys...The coupling of the sun's gravitational field with processes of diffusion and convection exerts a significant influence on the dynamical behavior of the core 3He nuclear reaction-diffusion system. Stability analyses of the system are made in this paper by using the theory of nonequilibrium dynamics. It is showed that, in the nuclear reaction regions extending from the center to about 0.38 times of the radius of the sun, the gravitational field enables the core 3He nuclear reaction-diffusion system to become unstable and, after the instability, new states to appear in the system have characteristic of time oscillation. This may change the production rates of both 7Be and 8B neutrinos.展开更多
In a world-shocking nuclear disaster occurred at Fukushima in 2011, multi-faceted consequences have manifested in not only direct and indirect but also tangible and intangible way in social, political, and economic do...In a world-shocking nuclear disaster occurred at Fukushima in 2011, multi-faceted consequences have manifested in not only direct and indirect but also tangible and intangible way in social, political, and economic domains. At present six year later, original risk issues, such as health, environmental, and financial risks, were complexly connected to each other, and have transformed to the wicked or complicated problems. This paper addresses the following four problems that we are faced with: prolonged evacuation and return to hometown, Tokyo Electric Power Company Holdings issues, nuclear regulatory issues, and nuclear energy policy and business. The authors discuss the reasons why above-noted situations arise from nuclear disaster in terms of endogenous factors embedded in socio-technical nuclear system in Japan and some common causes across the wicked problems. The wicked problems are also closely connected with each other, and become super-wicked problem. Among others, Japan's energy transition policy aiming at low carbon society tends to deviate politically and now at crossroad. Finally, the authors describe some perspectives and challenges required to govern interconnected events, as lessons learned from the Fukushima nuclear disaster.展开更多
A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artif...A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artificial neural networks.With this newly developed wave function,variational Monte Carlo calculations were carried out for3H and3He nuclei starting from a nuclear Hamiltonian based on the leadingorder pionless effective field theory.The obtained ground-state energy and charge radii were successfully benchmarked against the results of the highly-accurate hypersphericalharmonics method.The backflow transformation plays a crucial role in improving the nodal surface of the Slater determinant and,thus,providing accurate ground-state energy.展开更多
文摘In this paper, the hyperspherical harmonics used for solving the three and four body problems in nuclear physics are given. The equations of the adiabatic approximation to hyperspherical harmonic method are derived. Some properties of the hypernuclous Heare given as the illustrative example of the application of this method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10774163 and 10574143)the National Basic Research Program of China (Grant No 2006CB921203)
文摘DNA computation (DNAC) has been proposed to solve the satisfiability (SAT) problem due to operations in parallel on extremely large numbers of strands. This paper attempts to treat the DNA-based bio-molecular solution for the SAT problem from the quantum mechanical perspective with a purpose to explore the relationship between DNAC and quantum computation (QC). To achieve this goal, it first builds up the correspondence of operations between QC and DNAC. Then it gives an example for the case of two variables and three clauses for details of this theory. It also demonstrates a three-qubit experiment for solving the simplest SAT problem with a single variable on a liquid-state nuclear magnetic resonance ensemble to verify this theory. Some discussions are made for the potential application and for further exploration of the present work.
文摘The coupling of the sun's gravitational field with processes of diffusion and convection exerts a significant influence on the dynamical behavior of the core 3He nuclear reaction-diffusion system. Stability analyses of the system are made in this paper by using the theory of nonequilibrium dynamics. It is showed that, in the nuclear reaction regions extending from the center to about 0.38 times of the radius of the sun, the gravitational field enables the core 3He nuclear reaction-diffusion system to become unstable and, after the instability, new states to appear in the system have characteristic of time oscillation. This may change the production rates of both 7Be and 8B neutrinos.
文摘In a world-shocking nuclear disaster occurred at Fukushima in 2011, multi-faceted consequences have manifested in not only direct and indirect but also tangible and intangible way in social, political, and economic domains. At present six year later, original risk issues, such as health, environmental, and financial risks, were complexly connected to each other, and have transformed to the wicked or complicated problems. This paper addresses the following four problems that we are faced with: prolonged evacuation and return to hometown, Tokyo Electric Power Company Holdings issues, nuclear regulatory issues, and nuclear energy policy and business. The authors discuss the reasons why above-noted situations arise from nuclear disaster in terms of endogenous factors embedded in socio-technical nuclear system in Japan and some common causes across the wicked problems. The wicked problems are also closely connected with each other, and become super-wicked problem. Among others, Japan's energy transition policy aiming at low carbon society tends to deviate politically and now at crossroad. Finally, the authors describe some perspectives and challenges required to govern interconnected events, as lessons learned from the Fukushima nuclear disaster.
基金Supported by National Key R&D Program of China (018YFA0404400)National Natural Science Foundation of China (12070131001,11875075,11935003,11975031,12141501)。
文摘A novel variational wave function defined as a Jastrow factor multiplying a backflow transformed Slater determinant was developed for A=3 nuclei.The Jastrow factor and backflow transformation were represented by artificial neural networks.With this newly developed wave function,variational Monte Carlo calculations were carried out for3H and3He nuclei starting from a nuclear Hamiltonian based on the leadingorder pionless effective field theory.The obtained ground-state energy and charge radii were successfully benchmarked against the results of the highly-accurate hypersphericalharmonics method.The backflow transformation plays a crucial role in improving the nodal surface of the Slater determinant and,thus,providing accurate ground-state energy.