Image enhancement plays an important role in many applications of medical imaging. Image enhancement technologies can improve the qualities of medical images with low contrast and high level noise by stretching contra...Image enhancement plays an important role in many applications of medical imaging. Image enhancement technologies can improve the qualities of medical images with low contrast and high level noise by stretching contrast, suppressing noise and so on. Such images processed by image enhancement technologies are helpful to doctors in analyses and diagnoses. In this paper, we present a technical review of various existing image enhancement methodologies which are often emoloved.展开更多
Study of image enhancement shows that the quality of image heavily relies on human visual system. In this paper, we apply this fact effectively to design a new image enhancement method for medical images that improves...Study of image enhancement shows that the quality of image heavily relies on human visual system. In this paper, we apply this fact effectively to design a new image enhancement method for medical images that improves the detail regions. First, the eye region of interest (ROI) is segmented; then the Un-sharp Masking (USM) is used to enhance the detail regions. Experiments show that the proposed method can effectively improve the accuracy of medical image enhancement and has a significant effect.展开更多
Medical imaging includes different modalities and processes to visualize the interior of human body for diagnostic and treatment purpose. However, one of the most common degradations in medical images is their poor co...Medical imaging includes different modalities and processes to visualize the interior of human body for diagnostic and treatment purpose. However, one of the most common degradations in medical images is their poor contrast quality and noise. The existence of several objects and the close proximity of adjacent pixels values make the diagnostic process a daunting task. The idea of image enhancement techniques is to improve the quality of an image. In this study, morphological transform operation is carried out on medical images to enhance the contrast and quality. A disk shaped mask is used in Top-Hat and Bottom-Hat transform and this mask plays a vital role in the operation. Different types and sizes of medical images need different masks so that they can be successfully enhanced. The method shown in this study takes a mask of an arbitrary size and keeps changing its size until an optimum enhanced image is obtained from the transformation operation. The enhancement is achieved via an iterative exfoliation process. The results indicate that this method improves the contrast of medical images and can help with better diagnosis.展开更多
Medical image enhancement is an essential process for superior disease diagnosis as well as for detection of pathological lesion accurately. Computed Tomography (CT) is considered a vital medical imaging modality to e...Medical image enhancement is an essential process for superior disease diagnosis as well as for detection of pathological lesion accurately. Computed Tomography (CT) is considered a vital medical imaging modality to evaluate numerous diseases such as tumors and vascular lesions. However, speckle noise corrupts the CT images and makes the clinical data analysis ambiguous. Therefore, for accurate diagnosis, medical image enhancement is a must for noise removal and sharp/clear images. In this work, a medical image enhancement algorithm has been proposed using log transform in an optimization framework. In order to achieve optimization, a well-known meta-heuristic algorithm, namely: Cuckoo search (CS) algorithm is used to determine the optimal parameter settings for log transform. The performance of the proposed technique is studied on a low contrast CT image dataset. Besides this, the results clearly show that the CS based approach has superior convergence and fitness values compared to PSO as the CS converge faster that proves the efficacy of the CS based technique. Finally, Image Quality Analysis (IQA) justifies the robustness of the proposed enhancement technique.展开更多
The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that c...The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%.展开更多
As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nucl...As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality.展开更多
In the literature,numerous techniques have been employed to decrease noise in medical image modalities,including X-Ray(XR),Ultrasonic(Us),Computed Tomography(CT),Magnetic Resonance Imaging(MRI),and Positron Emission T...In the literature,numerous techniques have been employed to decrease noise in medical image modalities,including X-Ray(XR),Ultrasonic(Us),Computed Tomography(CT),Magnetic Resonance Imaging(MRI),and Positron Emission Tomography(PET).These techniques are organized into two main classes:the Multiple Image(MI)and the Single Image(SI)techniques.In the MI techniques,images usually obtained for the same area scanned from different points of view are used.A single image is used in the entire procedure in the SI techniques.SI denoising techniques can be carried out both in a transform or spatial domain.This paper is concerned with single-image noise reduction techniques because we deal with single medical images.The most well-known spatial domain noise reduction techniques,including Gaussian filter,Kuan filter,Frost filter,Lee filter,Gabor filter,Median filter,Homomorphic filter,Speckle reducing anisotropic diffusion(SRAD),Nonlocal-Means(NL-Means),and Total Variation(TV),are studied.Also,the transform domain noise reduction techniques,including wavelet-based and Curvelet-based techniques,and some hybridization techniques are investigated.Finally,a deep(Convolutional Neural Network)CNN-based denoising model is proposed to eliminate Gaussian and Speckle noises in different medical image modalities.This model utilizes the Batch Normalization(BN)and the ReLU as a basic structure.As a result,it attained a considerable improvement over the traditional techniques.The previously mentioned techniques are evaluated and compared by calculating qualitative visual inspection and quantitative parameters like Peak Signal-to-Noise Ratio(PSNR),Correlation Coefficient(Cr),and system complexity to determine the optimum denoising algorithm to be applied universally.Based on the quality metrics,it is demonstrated that the proposed deep CNN-based denoising model is efficient and has superior denoising performance over the traditionaldenoising techniques.展开更多
Medical Resonance Imaging(MRI)is a noninvasive,nonradioactive,and meticulous diagnostic modality capability in the field of medical imaging.However,the efficiency of MR image reconstruction is affected by its bulky im...Medical Resonance Imaging(MRI)is a noninvasive,nonradioactive,and meticulous diagnostic modality capability in the field of medical imaging.However,the efficiency of MR image reconstruction is affected by its bulky image sets and slow process implementation.Therefore,to obtain a high-quality reconstructed image we presented a sparse aware noise removal technique that uses convolution neural network(SANR_CNN)for eliminating noise and improving the MR image reconstruction quality.The proposed noise removal or denoising technique adopts a fast CNN architecture that aids in training larger datasets with improved quality,and SARN algorithm is used for building a dictionary learning technique for denoising large image datasets.The proposed SANR_CNN model also preserves the details and edges in the image during reconstruction.An experiment was conducted to analyze the performance of SANR_CNN in a few existing models in regard with peak signal-to-noise ratio(PSNR),structural similarity index(SSIM),and mean squared error(MSE).The proposed SANR_CNN model achieved higher PSNR,SSIM,and MSE efficiency than the other noise removal techniques.The proposed architecture also provides transmission of these denoised medical images through secured IoT architecture.展开更多
Image denoising has become one of the major forms of image enhancement methods that form the basis of image processing. Due to the inconsistencies in the machinery producing these signals, medical images tend to requi...Image denoising has become one of the major forms of image enhancement methods that form the basis of image processing. Due to the inconsistencies in the machinery producing these signals, medical images tend to require these techniques. In real time, images do not contain a single noise, and instead they contain multiple types of noise distributions in several indistinct regions. This paper presents an image denoising method that uses Metaheuristics to perform noise identification. Adaptive block selection is used to identify and correct the noise contained in these blocks. Though the system uses a block selection scheme, modifications are performed on pixel- to-pixel basis and not on the entire blocks;hence the image accuracy is preserved. PSO is used to identify the noise distribution, and appropriate noise correction techniques are applied to denoise the images. Experiments were conducted using salt and pepper noise, Gaussian noise and a combination of both the noise in the same image. It was observed that the proposed method performed effectively on noise levels up-to 0.5 and was able to produce results with PSNR values ranging from 20 to 30 in most of the cases. Excellent reduction rates were observed on salt and pepper noise and moderate reduction rates were observed on Gaussian noise. Experimental results show that our proposed system has a wide range of applicability in any domain specific image denoising scenario, such as medical imaging, mammogram etc.展开更多
Due to the development of CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), EBCT (Electron Beam Computed Tomography), SMRI (Stereotactic Magnetic Resonance Imaging), etc. ...Due to the development of CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), EBCT (Electron Beam Computed Tomography), SMRI (Stereotactic Magnetic Resonance Imaging), etc. has enhanced the distinguishing rate and scanning rate of the imaging equipments. The diagnosis and the process of getting useful information from the image are got by processing the medical images using the wavelet technique. Wavelet transform has increased the compression rate. Increasing the compression performance by minimizing the amount of image data in the medical images is a critical task. Crucial medical information like diagnosing diseases and their treatments is obtained by modern radiology techniques. Medical Imaging (MI) process is used to acquire that information. For lossy and lossless image compression, several techniques were developed. Image edges have limitations in capturing them if we make use of the extension of 1-D wavelet transform. This is because wavelet transform cannot effectively transform straight line discontinuities, as well geographic lines in natural images cannot be reconstructed in a proper manner if 1-D transform is used. Differently oriented image textures are coded well using Curvelet Transform. The Curvelet Transform is suitable for compressing medical images, which has more curvy portions. This paper describes a method for compression of various medical images using Fast Discrete Curvelet Transform based on wrapping technique. After transformation, the coefficients are quantized using vector quantization and coded using arithmetic encoding technique. The proposed method is tested on various medical images and the result demonstrates significant improvement in performance parameters like Peak Signal to Noise Ratio (PSNR) and Compression Ratio (CR).展开更多
The novel method of improving the quality metric of protein microarray image presented in this paper reduces impulse noise by using an adaptive median filter that employs the switching scheme based on local statistics...The novel method of improving the quality metric of protein microarray image presented in this paper reduces impulse noise by using an adaptive median filter that employs the switching scheme based on local statistics characters; and achieves the impulse detection by using the difference between the standard deviation of the pixels within the filter window and the current pixel of concern. It also uses a top-hat filter to correct the background variation. In order to decrease time consumption, the top-hat filter core is cross structure. The experimental results showed that, for a protein microarray image contaminated by impulse noise and with slow background variation, the new method can significantly increase the signal-to-noise ratio, correct the trends in the background, and enhance the flatness of the background and the consistency of the signal intensity.展开更多
Ice and snow domint the land features in Antarctica. The great brightness and poorcontrast of ice and snow and streaking noise in satellite image make the procedure of image processing difficult. On the other hand ho...Ice and snow domint the land features in Antarctica. The great brightness and poorcontrast of ice and snow and streaking noise in satellite image make the procedure of image processing difficult. On the other hand however, the contrast between bare rock land/sea water and ice/snow is so high that the details of image will be overcompressed.In the light of characteristics of satellite image in Antarctica, a filtering to remove streaking noise has adn discussed. Based on automatic identify classification to enhance the details of objects and the method and theory of digital rectification of satellite image with ground control points measured from field survey are also presented.展开更多
Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intole...Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images.Drastic changes in brightness features,induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings.To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well.This method termed as Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE)partitions the histogram of the image into two sub histograms after a power-law transformation and a log compression.After a modification intended for improving the dispersion of the sub-histograms and subsequent normalization,cumulative histograms are computed.Enhanced grey level values are computed from the resultant cumulative histograms.The performance of the PLMHE algorithm is comparedwith traditional histogram equalization based algorithms and it has been observed from the results that PLMHE can boost the image contrast without causing dynamic range compression,a significant change in mean brightness,and contrast-overshoot.展开更多
In this paper,an image processing method for improving the quality of optical coherence tomography(OCT)images is proposed.Wavelet denoising based on context modeling and contrast enhancement by means of the contrast m...In this paper,an image processing method for improving the quality of optical coherence tomography(OCT)images is proposed.Wavelet denoising based on context modeling and contrast enhancement by means of the contrast measure in the wavelet domain is carried out on the OCT images in succession.Three parameters are selected to assess the effectiveness of the method.It is shown from the results that the proposed method can not only enhance the contrast of images,but also improve signal-to-noise ratio.Compared with two other typical algorithms,it has the best visual effect.展开更多
Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion.Such as Positron Emission Computed Tomography(PET),Computed Tomography(CT),and PET-CT.How to utilize the lesio...Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion.Such as Positron Emission Computed Tomography(PET),Computed Tomography(CT),and PET-CT.How to utilize the lesion anatomical and functional information effectively and improve the network segmentation performance are key questions.To solve the problem,the Saliency Feature-Guided Interactive Feature Enhancement Lung Tumor Segmentation Network(Guide-YNet)is proposed in this paper.Firstly,a double-encoder single-decoder U-Net is used as the backbone in this model,a single-coder single-decoder U-Net is used to generate the saliency guided feature using PET image and transmit it into the skip connection of the backbone,and the high sensitivity of PET images to tumors is used to guide the network to accurately locate lesions.Secondly,a Cross Scale Feature Enhancement Module(CSFEM)is designed to extract multi-scale fusion features after downsampling.Thirdly,a Cross-Layer Interactive Feature Enhancement Module(CIFEM)is designed in the encoder to enhance the spatial position information and semantic information.Finally,a Cross-Dimension Cross-Layer Feature Enhancement Module(CCFEM)is proposed in the decoder,which effectively extractsmultimodal image features through global attention and multi-dimension local attention.The proposed method is verified on the lung multimodal medical image datasets,and the results showthat theMean Intersection overUnion(MIoU),Accuracy(Acc),Dice Similarity Coefficient(Dice),Volumetric overlap error(Voe),Relative volume difference(Rvd)of the proposed method on lung lesion segmentation are 87.27%,93.08%,97.77%,95.92%,89.28%,and 88.68%,respectively.It is of great significance for computer-aided diagnosis.展开更多
Retinal vasculature is a network of vessels in the retinal layer. In ophthalmology, information of retinal vasculature in analyzing fundus images is important for early detection of diseases related to the retina, e.g...Retinal vasculature is a network of vessels in the retinal layer. In ophthalmology, information of retinal vasculature in analyzing fundus images is important for early detection of diseases related to the retina, e.g. diabetic retinopathy. However, in fundus images the contrast between retinal vasculature and the background is very low. As a result, analyzing or visualizing tiny retinal vasculature is difficult. There-fore, enhancement of retinal vasculature in digital fundus image is important to provide better visualization of retinal blood vessels as well as to increase accuracy of retinal vasculature segmentation. Fluorescein angiogram overcomes this imaging problem but it is an invasive procedure that leads to other physiological problems. In this research work, the low contrast problem of retinal fundus images ob-tained from fundus camera is addressed. We develop a fundus image model based on probability distribution function of melanin, haemoglobin and macular pigment to represent melanin, retinal vasculature and macular region, respectively. We determine retinal pigments makeup, namely macular pigment, melanin and haemoglobin using independent component analysis. Independent component image due to haemoglobin obtained is used since it exhibits higher contrast retinal vasculature. Contrast of reti-nal vasculature from independent component image due to haemoglobin is compared to those from other enhancement methods. Results show that this approach outperforms other non-invasive enhancement methods, such as contrast stretching, histogram equalization and CLAHE and can be beneficial for retinal vasculature segmentation. Contrast enhancement factor up to 2.62 for a digital retinal fundus image model is achieved. This improvement in contrast reduces the need of applying contrasting agent on patients.展开更多
Although there are many effective methods for removing impulse noise in image restoration,there is still much room for improvement.In this paper,we propose a new two-phase method for solving such a problem,which combi...Although there are many effective methods for removing impulse noise in image restoration,there is still much room for improvement.In this paper,we propose a new two-phase method for solving such a problem,which combines the nuclear norm and the total variation regularization with box constraint.The popular alternating direction method of multipliers and the proximal alternating direction method of multipliers are employed to solve this problem.Compared with other algorithms,the obtained algorithm has an explicit solution at each step.Numerical experiments demonstrate that the proposed method performs better than the stateof-the-art methods in terms of both subjective and objective evaluations.展开更多
Ultrasound is a low-cost,non-invasive and real-time imaging modality that has proved popular for many medical applications.Unfortunately,the acquired ultrasound images are often corrupted by speckle noise from scatter...Ultrasound is a low-cost,non-invasive and real-time imaging modality that has proved popular for many medical applications.Unfortunately,the acquired ultrasound images are often corrupted by speckle noise from scatterers smaller than ultrasound beam wavelength.The signal-dependent speckle noise makes visual observation difficult.In this paper,we propose a patch-based low-rank approach for reducing the speckle noise in ultrasound images.After constructing the patch group of the ultrasound images by the block-matching scheme,we establish a variational model using the weighted nuclear norm as a regularizer for the patch group.The alternating direction method of multipliers(ADMM)is applied for solving the established nonconvex model.We return all the approximate patches to their original locations and get the final restored ultrasound images.Experimental results are given to demonstrate that the proposed method outperforms some existing state-of-the-art methods in terms of visual quality and quantitative measures.展开更多
基金supported by the National Research Foundation for the Doctoral Program of Higher Education of China (20110131130004)Independent Innovation Foundation of Shandong University,IIFSDU (2012TB013)Ji’nan Science and Technology Development Project (No.201202015)
文摘Image enhancement plays an important role in many applications of medical imaging. Image enhancement technologies can improve the qualities of medical images with low contrast and high level noise by stretching contrast, suppressing noise and so on. Such images processed by image enhancement technologies are helpful to doctors in analyses and diagnoses. In this paper, we present a technical review of various existing image enhancement methodologies which are often emoloved.
基金Supported by National Natural Science Foundation of China(NSFC)(No.61173174,61103117)the Science and Technology of Jinan(No.201303011)
文摘Study of image enhancement shows that the quality of image heavily relies on human visual system. In this paper, we apply this fact effectively to design a new image enhancement method for medical images that improves the detail regions. First, the eye region of interest (ROI) is segmented; then the Un-sharp Masking (USM) is used to enhance the detail regions. Experiments show that the proposed method can effectively improve the accuracy of medical image enhancement and has a significant effect.
文摘Medical imaging includes different modalities and processes to visualize the interior of human body for diagnostic and treatment purpose. However, one of the most common degradations in medical images is their poor contrast quality and noise. The existence of several objects and the close proximity of adjacent pixels values make the diagnostic process a daunting task. The idea of image enhancement techniques is to improve the quality of an image. In this study, morphological transform operation is carried out on medical images to enhance the contrast and quality. A disk shaped mask is used in Top-Hat and Bottom-Hat transform and this mask plays a vital role in the operation. Different types and sizes of medical images need different masks so that they can be successfully enhanced. The method shown in this study takes a mask of an arbitrary size and keeps changing its size until an optimum enhanced image is obtained from the transformation operation. The enhancement is achieved via an iterative exfoliation process. The results indicate that this method improves the contrast of medical images and can help with better diagnosis.
文摘Medical image enhancement is an essential process for superior disease diagnosis as well as for detection of pathological lesion accurately. Computed Tomography (CT) is considered a vital medical imaging modality to evaluate numerous diseases such as tumors and vascular lesions. However, speckle noise corrupts the CT images and makes the clinical data analysis ambiguous. Therefore, for accurate diagnosis, medical image enhancement is a must for noise removal and sharp/clear images. In this work, a medical image enhancement algorithm has been proposed using log transform in an optimization framework. In order to achieve optimization, a well-known meta-heuristic algorithm, namely: Cuckoo search (CS) algorithm is used to determine the optimal parameter settings for log transform. The performance of the proposed technique is studied on a low contrast CT image dataset. Besides this, the results clearly show that the CS based approach has superior convergence and fitness values compared to PSO as the CS converge faster that proves the efficacy of the CS based technique. Finally, Image Quality Analysis (IQA) justifies the robustness of the proposed enhancement technique.
文摘The act of transmitting photos via the Internet has become a routine and significant activity.Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced.This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images.The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression.This paper introduces a content-based image authentication mechanism that is suitable for usage across an untrusted network and resistant to data loss during transmission.By employing scale attributes and a key-dependent parametric Long Short-Term Memory(LSTM),it is feasible to improve the resilience of digital signatures against image deterioration and strengthen their security against malicious actions.Furthermore,the successful implementation of transmitting biometric data in a compressed format over a wireless network has been accomplished.For applications involving the transmission and sharing of images across a network.The suggested technique utilizes the scalability of a structural digital signature to attain a satisfactory equilibrium between security and picture transfer.An effective adaptive compression strategy was created to lengthen the overall lifetime of the network by sharing the processing of responsibilities.This scheme ensures a large reduction in computational and energy requirements while minimizing image quality loss.This approach employs multi-scale characteristics to improve the resistance of signatures against image deterioration.The proposed system attained a Gaussian noise value of 98%and a rotation accuracy surpassing 99%.
基金supported by the National Natural Science Foundation of China(6140130861572063)+7 种基金the Natural Science Foundation of Hebei Province(F2016201142F2016201187)the Natural Social Foundation of Hebei Province(HB15TQ015)the Science Research Project of Hebei Province(QN2016085ZC2016040)the Science and Technology Support Project of Hebei Province(15210409)the Natural Science Foundation of Hebei University(2014-303)the National Comprehensive Ability Promotion Project of Western and Central China
文摘As synthetic aperture radar(SAR) has been widely used nearly in every field, SAR image de-noising became a very important research field. A new SAR image de-noising method based on texture strength and weighted nuclear norm minimization(WNNM) is proposed. To implement blind de-noising, the accurate estimation of noise variance is very important. So far, it is still a challenge to estimate SAR image noise level accurately because of the rich texture. Principal component analysis(PCA) and the low rank patches selected by image texture strength are used to estimate the noise level. With the help of noise level, WNNM can be expected to SAR image de-noising. Experimental results show that the proposed method outperforms many excellent de-noising algorithms such as Bayes least squares-Gaussian scale mixtures(BLS-GSM) method, non-local means(NLM) filtering in terms of both quantitative measure and visual perception quality.
文摘In the literature,numerous techniques have been employed to decrease noise in medical image modalities,including X-Ray(XR),Ultrasonic(Us),Computed Tomography(CT),Magnetic Resonance Imaging(MRI),and Positron Emission Tomography(PET).These techniques are organized into two main classes:the Multiple Image(MI)and the Single Image(SI)techniques.In the MI techniques,images usually obtained for the same area scanned from different points of view are used.A single image is used in the entire procedure in the SI techniques.SI denoising techniques can be carried out both in a transform or spatial domain.This paper is concerned with single-image noise reduction techniques because we deal with single medical images.The most well-known spatial domain noise reduction techniques,including Gaussian filter,Kuan filter,Frost filter,Lee filter,Gabor filter,Median filter,Homomorphic filter,Speckle reducing anisotropic diffusion(SRAD),Nonlocal-Means(NL-Means),and Total Variation(TV),are studied.Also,the transform domain noise reduction techniques,including wavelet-based and Curvelet-based techniques,and some hybridization techniques are investigated.Finally,a deep(Convolutional Neural Network)CNN-based denoising model is proposed to eliminate Gaussian and Speckle noises in different medical image modalities.This model utilizes the Batch Normalization(BN)and the ReLU as a basic structure.As a result,it attained a considerable improvement over the traditional techniques.The previously mentioned techniques are evaluated and compared by calculating qualitative visual inspection and quantitative parameters like Peak Signal-to-Noise Ratio(PSNR),Correlation Coefficient(Cr),and system complexity to determine the optimum denoising algorithm to be applied universally.Based on the quality metrics,it is demonstrated that the proposed deep CNN-based denoising model is efficient and has superior denoising performance over the traditionaldenoising techniques.
基金This research was financially supported in part by the Ministry of Trade,Industry and Energy(MOTIE)and Korea Institute for Advancement of Technology(KIAT)through the International Cooperative R&D program.(Project No.P0016038)and in part by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2021-2016-0-00312)supervised by the IITP(Institute for Information&communications Technology Planning&Evaluation).
文摘Medical Resonance Imaging(MRI)is a noninvasive,nonradioactive,and meticulous diagnostic modality capability in the field of medical imaging.However,the efficiency of MR image reconstruction is affected by its bulky image sets and slow process implementation.Therefore,to obtain a high-quality reconstructed image we presented a sparse aware noise removal technique that uses convolution neural network(SANR_CNN)for eliminating noise and improving the MR image reconstruction quality.The proposed noise removal or denoising technique adopts a fast CNN architecture that aids in training larger datasets with improved quality,and SARN algorithm is used for building a dictionary learning technique for denoising large image datasets.The proposed SANR_CNN model also preserves the details and edges in the image during reconstruction.An experiment was conducted to analyze the performance of SANR_CNN in a few existing models in regard with peak signal-to-noise ratio(PSNR),structural similarity index(SSIM),and mean squared error(MSE).The proposed SANR_CNN model achieved higher PSNR,SSIM,and MSE efficiency than the other noise removal techniques.The proposed architecture also provides transmission of these denoised medical images through secured IoT architecture.
文摘Image denoising has become one of the major forms of image enhancement methods that form the basis of image processing. Due to the inconsistencies in the machinery producing these signals, medical images tend to require these techniques. In real time, images do not contain a single noise, and instead they contain multiple types of noise distributions in several indistinct regions. This paper presents an image denoising method that uses Metaheuristics to perform noise identification. Adaptive block selection is used to identify and correct the noise contained in these blocks. Though the system uses a block selection scheme, modifications are performed on pixel- to-pixel basis and not on the entire blocks;hence the image accuracy is preserved. PSO is used to identify the noise distribution, and appropriate noise correction techniques are applied to denoise the images. Experiments were conducted using salt and pepper noise, Gaussian noise and a combination of both the noise in the same image. It was observed that the proposed method performed effectively on noise levels up-to 0.5 and was able to produce results with PSNR values ranging from 20 to 30 in most of the cases. Excellent reduction rates were observed on salt and pepper noise and moderate reduction rates were observed on Gaussian noise. Experimental results show that our proposed system has a wide range of applicability in any domain specific image denoising scenario, such as medical imaging, mammogram etc.
文摘Due to the development of CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), EBCT (Electron Beam Computed Tomography), SMRI (Stereotactic Magnetic Resonance Imaging), etc. has enhanced the distinguishing rate and scanning rate of the imaging equipments. The diagnosis and the process of getting useful information from the image are got by processing the medical images using the wavelet technique. Wavelet transform has increased the compression rate. Increasing the compression performance by minimizing the amount of image data in the medical images is a critical task. Crucial medical information like diagnosing diseases and their treatments is obtained by modern radiology techniques. Medical Imaging (MI) process is used to acquire that information. For lossy and lossless image compression, several techniques were developed. Image edges have limitations in capturing them if we make use of the extension of 1-D wavelet transform. This is because wavelet transform cannot effectively transform straight line discontinuities, as well geographic lines in natural images cannot be reconstructed in a proper manner if 1-D transform is used. Differently oriented image textures are coded well using Curvelet Transform. The Curvelet Transform is suitable for compressing medical images, which has more curvy portions. This paper describes a method for compression of various medical images using Fast Discrete Curvelet Transform based on wrapping technique. After transformation, the coefficients are quantized using vector quantization and coded using arithmetic encoding technique. The proposed method is tested on various medical images and the result demonstrates significant improvement in performance parameters like Peak Signal to Noise Ratio (PSNR) and Compression Ratio (CR).
文摘The novel method of improving the quality metric of protein microarray image presented in this paper reduces impulse noise by using an adaptive median filter that employs the switching scheme based on local statistics characters; and achieves the impulse detection by using the difference between the standard deviation of the pixels within the filter window and the current pixel of concern. It also uses a top-hat filter to correct the background variation. In order to decrease time consumption, the top-hat filter core is cross structure. The experimental results showed that, for a protein microarray image contaminated by impulse noise and with slow background variation, the new method can significantly increase the signal-to-noise ratio, correct the trends in the background, and enhance the flatness of the background and the consistency of the signal intensity.
文摘Ice and snow domint the land features in Antarctica. The great brightness and poorcontrast of ice and snow and streaking noise in satellite image make the procedure of image processing difficult. On the other hand however, the contrast between bare rock land/sea water and ice/snow is so high that the details of image will be overcompressed.In the light of characteristics of satellite image in Antarctica, a filtering to remove streaking noise has adn discussed. Based on automatic identify classification to enhance the details of objects and the method and theory of digital rectification of satellite image with ground control points measured from field survey are also presented.
基金This work was supported by Taif university Researchers Supporting Project Number(TURSP-2020/114),Taif University,Taif,Saudi Arabia.
文摘Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images.Drastic changes in brightness features,induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings.To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well.This method termed as Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE)partitions the histogram of the image into two sub histograms after a power-law transformation and a log compression.After a modification intended for improving the dispersion of the sub-histograms and subsequent normalization,cumulative histograms are computed.Enhanced grey level values are computed from the resultant cumulative histograms.The performance of the PLMHE algorithm is comparedwith traditional histogram equalization based algorithms and it has been observed from the results that PLMHE can boost the image contrast without causing dynamic range compression,a significant change in mean brightness,and contrast-overshoot.
基金supported by the National Natural Science Foundation of China(Grant Nos.60637020 and 60677012)the Tianjin Foundation of Natural Science(No.09JCZDJC18300).
文摘In this paper,an image processing method for improving the quality of optical coherence tomography(OCT)images is proposed.Wavelet denoising based on context modeling and contrast enhancement by means of the contrast measure in the wavelet domain is carried out on the OCT images in succession.Three parameters are selected to assess the effectiveness of the method.It is shown from the results that the proposed method can not only enhance the contrast of images,but also improve signal-to-noise ratio.Compared with two other typical algorithms,it has the best visual effect.
基金supported in part by the National Natural Science Foundation of China(Grant No.62062003)Natural Science Foundation of Ningxia(Grant No.2023AAC03293).
文摘Multimodal lung tumor medical images can provide anatomical and functional information for the same lesion.Such as Positron Emission Computed Tomography(PET),Computed Tomography(CT),and PET-CT.How to utilize the lesion anatomical and functional information effectively and improve the network segmentation performance are key questions.To solve the problem,the Saliency Feature-Guided Interactive Feature Enhancement Lung Tumor Segmentation Network(Guide-YNet)is proposed in this paper.Firstly,a double-encoder single-decoder U-Net is used as the backbone in this model,a single-coder single-decoder U-Net is used to generate the saliency guided feature using PET image and transmit it into the skip connection of the backbone,and the high sensitivity of PET images to tumors is used to guide the network to accurately locate lesions.Secondly,a Cross Scale Feature Enhancement Module(CSFEM)is designed to extract multi-scale fusion features after downsampling.Thirdly,a Cross-Layer Interactive Feature Enhancement Module(CIFEM)is designed in the encoder to enhance the spatial position information and semantic information.Finally,a Cross-Dimension Cross-Layer Feature Enhancement Module(CCFEM)is proposed in the decoder,which effectively extractsmultimodal image features through global attention and multi-dimension local attention.The proposed method is verified on the lung multimodal medical image datasets,and the results showthat theMean Intersection overUnion(MIoU),Accuracy(Acc),Dice Similarity Coefficient(Dice),Volumetric overlap error(Voe),Relative volume difference(Rvd)of the proposed method on lung lesion segmentation are 87.27%,93.08%,97.77%,95.92%,89.28%,and 88.68%,respectively.It is of great significance for computer-aided diagnosis.
文摘Retinal vasculature is a network of vessels in the retinal layer. In ophthalmology, information of retinal vasculature in analyzing fundus images is important for early detection of diseases related to the retina, e.g. diabetic retinopathy. However, in fundus images the contrast between retinal vasculature and the background is very low. As a result, analyzing or visualizing tiny retinal vasculature is difficult. There-fore, enhancement of retinal vasculature in digital fundus image is important to provide better visualization of retinal blood vessels as well as to increase accuracy of retinal vasculature segmentation. Fluorescein angiogram overcomes this imaging problem but it is an invasive procedure that leads to other physiological problems. In this research work, the low contrast problem of retinal fundus images ob-tained from fundus camera is addressed. We develop a fundus image model based on probability distribution function of melanin, haemoglobin and macular pigment to represent melanin, retinal vasculature and macular region, respectively. We determine retinal pigments makeup, namely macular pigment, melanin and haemoglobin using independent component analysis. Independent component image due to haemoglobin obtained is used since it exhibits higher contrast retinal vasculature. Contrast of reti-nal vasculature from independent component image due to haemoglobin is compared to those from other enhancement methods. Results show that this approach outperforms other non-invasive enhancement methods, such as contrast stretching, histogram equalization and CLAHE and can be beneficial for retinal vasculature segmentation. Contrast enhancement factor up to 2.62 for a digital retinal fundus image model is achieved. This improvement in contrast reduces the need of applying contrasting agent on patients.
基金funded by the National Natural Science Foundations of China(Grant Nos.12061045,12031003,12271117)the Jiangxi Provincial Natural Science Foundation(Grant No.20224ACB211004)the basic research joint funding project of university and Guangzhou City(Grant No.202102010434).
文摘Although there are many effective methods for removing impulse noise in image restoration,there is still much room for improvement.In this paper,we propose a new two-phase method for solving such a problem,which combines the nuclear norm and the total variation regularization with box constraint.The popular alternating direction method of multipliers and the proximal alternating direction method of multipliers are employed to solve this problem.Compared with other algorithms,the obtained algorithm has an explicit solution at each step.Numerical experiments demonstrate that the proposed method performs better than the stateof-the-art methods in terms of both subjective and objective evaluations.
基金supported by NSF of Jiangsu Province(No.BK20181483),NSFC(Nos.11671002,11701079,61731009)the Fundamental Research Funds for the Central Universities,and Science and Technology Commission of Shanghai Municipality(Nos.19JC1420102,18dz2271000)Hai Yan project,Lianyungang 521 project and NSF of HHIT(No.Z2017004).
文摘Ultrasound is a low-cost,non-invasive and real-time imaging modality that has proved popular for many medical applications.Unfortunately,the acquired ultrasound images are often corrupted by speckle noise from scatterers smaller than ultrasound beam wavelength.The signal-dependent speckle noise makes visual observation difficult.In this paper,we propose a patch-based low-rank approach for reducing the speckle noise in ultrasound images.After constructing the patch group of the ultrasound images by the block-matching scheme,we establish a variational model using the weighted nuclear norm as a regularizer for the patch group.The alternating direction method of multipliers(ADMM)is applied for solving the established nonconvex model.We return all the approximate patches to their original locations and get the final restored ultrasound images.Experimental results are given to demonstrate that the proposed method outperforms some existing state-of-the-art methods in terms of visual quality and quantitative measures.