Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well ...Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease.展开更多
The canalicular membrane represents the excretory pole of hepatocytes.Bile is an important route of elimination of potentially toxic endo-and xenobiotics(including drugs and toxins),mediated by the major canalicular t...The canalicular membrane represents the excretory pole of hepatocytes.Bile is an important route of elimination of potentially toxic endo-and xenobiotics(including drugs and toxins),mediated by the major canalicular transporters:multidrug resistance protein 1(MDR1, ABCB1),also known as P-glycoprotein,multidrug resistance-associated protein 2(MRP2,ABCC2),and the breast cancer resistance protein(BCRP,ABCG2).Their activities depend on regulation of expression and proper localization at the canalicular membrane,as regulated by transcriptional and post-transcriptional events,respectively.At transcriptional level,specific nuclear receptors(NR)s modulated by ligands,co-activators and co-repressors,mediate the physiological requirements of these transporters.This complex system is also responsible for alterations occurring in specific liver pathologies.We briefly describe the major ClassⅡNRs, pregnane X receptor(PXR)and constitutive androstane receptor(CAR),and their role in regulating expression of multidrug resistance proteins.Several therapeutic agents regulate the expression of relevant drug transporters through activation/inactivation of these NRs.We provide some representative examples of the action of therapeutic agents modulating liver drug transporters, which in addition,involve CAR or PXR as mediators.展开更多
The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells,capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer ste...The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells,capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells(CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs(BCSCs) are likely to sustain the growth of the primary tumour mass, as wellas to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and proinflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the antiinflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.展开更多
Major depressive disorder(MDD)is highly prevalent and is a significant cause of mortality and morbidity worldwide.Currently,conventional pharmacological treatments for MDD produce temporary remission in<50%of patie...Major depressive disorder(MDD)is highly prevalent and is a significant cause of mortality and morbidity worldwide.Currently,conventional pharmacological treatments for MDD produce temporary remission in<50%of patients;therefore,there is an urgent need for a wider spectrum of novel antidepressants to target newly discovered underlying disease mechanisms.Accumulated evidence has shown that immune inflammation,particularly inflammasome activity,plays an important role in the pathophysiology of MDD.In this review,we summarize the evidence on nuclear receptors(NRs),such as glucocorticoid receptor,mineralocorticoid receptor,estrogen receptor,aryl hydrocarbon receptor,and peroxisome proliferator-activated receptor,in modulating the inflammasome activity and depression-associated behaviors.This review provides evidence from an endocrine perspective to understand the role of activated NRs in the pathophysiology of MDD,and to provide insight for the discovery of antidepressants with novel mechanisms for this devastating disorder.展开更多
Objective To explore Effects of marine collagen peptides (MCPs) on markers of metablic nuclear receptors, i.e peroxisome proliferator-activated receptor (PPARs), liver X receptor (LXRs) and farnesoid X receptor ...Objective To explore Effects of marine collagen peptides (MCPs) on markers of metablic nuclear receptors, i.e peroxisome proliferator-activated receptor (PPARs), liver X receptor (LXRs) and farnesoid X receptor (FXRs) in type 2 diabetic patients with/without hypertension. Method Study population consisted of 200 type 2 diabetic patients with/without hypertension and 50 healthy subjects, all of whom were randomly assigned to MCPs-treated diabetics (n=50), placebo-treated diabetics (n=50), MCPs-treated diabetics with hypertension (n=50), placebo-treated diabetics with hypertension (n=50), and healthy controls (n=50). MCPs or placebo (water-soluble starch) were given daily before breakfast and bedtime over three months. Levels of free fatty acid, cytochrome P450, leptin, resistin, adiponectin, bradykinin, NO, and Prostacyclin were determined before intervention, and 1.5 months, and 3 months after intervention. Hypoglycemia and the endpoint events during the study were recorded and compared among the study groups. Result At the end of the study period, MCPs-treated patients showed marked improvement compared with patients receiving placebo. The protection exerted by MCPs seemed more profound in diabetics than in diabetics with hypertension. In particular, after MCPs intervention, levels of free fatty acid, hs-CRP, resistin, Prostacyclin decreased significantly in diabetics and tended to decrease in diabetic and hypertensive patients whereas levels of cytochrome P450, leptin, NO tended to decrease in diabetics with/without hypertension. Meanwhile, levels of adiponectin and bradykinin rose markedly in diabetics following MCPs administration. Conclusion MCPs could offer protection against diabetes and hypertension by affecting levels of molecules involved in diabetic and hypertensive pathogenesis. Regulation on metabolic nuclear receptors by MCPs may be the possible underlying mechanism for its observed effects in the study. Further study into its action may shed light on development of new drugs based on bioactive peptides from marine sources.展开更多
The onset of metabolic dysfunction-associated steatohepatitis(MASH)or non-alcoholic steatohepatitis(NASH)represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progressi...The onset of metabolic dysfunction-associated steatohepatitis(MASH)or non-alcoholic steatohepatitis(NASH)represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases(MASLD),formerly known as non-alcoholic fatty liver disease(NAFLD).With no pharmacological treat-ment currently available for MASH/NASH,the race is on to develop drugs targeting multiple facets of hepatic metabolism,inflammation,and pro-fibrotic events,which are major drivers of MASH.Nuclear receptors(NRs)regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation.Ligands of NRs may include hormones,lipids,bile acids,and synthetic ligands,which upon binding to NRs regulate the transcriptional activities of target genes.NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH.This review aims to cover the current understanding of NRs,including nuclear hormone receptors,non-steroid hormone receptors,circadian NRs,and orphan NRs,which are currently undergoing clinical trials for MASH treatment,along with NRs that have shown promising results in preclinical studies.展开更多
Overexpression of P-glycoprotein (P-gp) encoded by the multidrug resistance gene-1 (MDR-1) is the main mechanism responsible for multidrug resistance (MDR) in a majority of cancer cells. However, the mechanism b...Overexpression of P-glycoprotein (P-gp) encoded by the multidrug resistance gene-1 (MDR-1) is the main mechanism responsible for multidrug resistance (MDR) in a majority of cancer cells. However, the mechanism by which cancer cells acquire high levels of P-gp has not been well defined. Accumulating evidence suggests that nuclear receptors (NRs), especially human pregnane X receptor (PXR), play a crucial role in multidrug resistance. It has been shown that chemotherapeutic drug activates PXR and then enhances P-gp expression. Genetic knockdown or pharmacologic inhibition of PXR led to attenuation of drug-induced MDR1 over expression, implying that NRs may be an effective target to reverse multidrug resistance. Recent investigations suggested that transcriptional activity of NRs is mediated by methylases, the important enzymes involved in epigenetic regulation. Other epigenetic modifications, such as promoter methylation, histone deacetylases and microRNAs, were also found to be involved in activation of MDR1 promoter, though the underlying mechanisms are not thoroughly known. In this review, we summarized recent researches in the regulation of P-gp expression, with particular focus on NRs and epigenetics, aiming to provide references and options to reverse and/or prevent MDR in cancer treatment.展开更多
Associate Prof.Grace Liejun Guo is a tenured faculty in the Department of Pharmacology and Toxicology in the School of Pharmacy at the Rutgers University in New Jersey,USA.Dr.Guo graduated from the West China Universi...Associate Prof.Grace Liejun Guo is a tenured faculty in the Department of Pharmacology and Toxicology in the School of Pharmacy at the Rutgers University in New Jersey,USA.Dr.Guo graduated from the West China University of Medical Sciences in 1993.In 1997,Dr.Guo obtained a MS degree展开更多
Non-alcoholic fatty liver disease(NAFLD)has become the leading cause of chronic liver disease in adults and children worldwide.The symptoms of NAFLD range from simple steatosis and non-alcoholic stea-tohepatitis(NASH)...Non-alcoholic fatty liver disease(NAFLD)has become the leading cause of chronic liver disease in adults and children worldwide.The symptoms of NAFLD range from simple steatosis and non-alcoholic stea-tohepatitis(NASH)to hepatic fibrosis or cirrhosis,even ultimately develops to hepatocellular carcinoma.Nuclear receptors(NRs)are a superfamily of ligand-activated transcription factors,most of which are ligand-activated that control cellular homeostasis in the liver and other tissues.A growing number of studies demonstrated the important role of NRs in NAFLD.In this review,the current findings on the role of NRs in NAFLD are summarized and future perspectives to target NRs for NAFLD are discussed.展开更多
Pharmacological activation of the xenobiotic-sensing nuclear receptors pregnane X receptor(PXR) and constitutive androstane receptor(CAR) is well-known to increase drug metabolism and reduce inflammation. Little is kn...Pharmacological activation of the xenobiotic-sensing nuclear receptors pregnane X receptor(PXR) and constitutive androstane receptor(CAR) is well-known to increase drug metabolism and reduce inflammation. Little is known regarding their physiological functions on the gut microbiome. In this study, we discovered bivalent hormetic functions of PXR/CAR modulating the richness of the gut microbiome using genetically engineered mice. The absence of PXR or CAR increased microbial richness, and absence of both receptors synergistically increased microbial richness. PXR and CAR deficiency increased the pro-inflammatory bacteria Helicobacteraceae and Helicobacter. Deficiency in both PXR and CAR increased the relative abundance of Lactobacillus, which has bile salt hydrolase activity, corresponding to decreased primary taurine-conjugated bile acids(BAs) in feces, which may lead to higher internal burden of taurine and unconjugated BAs, both of which are linked to inflammation, oxidative stress, and cytotoxicity. The basal effect of PXR/CAR on the gut microbiome was distinct from pharmacological and toxicological activation of these receptors. Common PXR/CAR-targeted bacteria were identified, the majority of which were suppressed by these receptors. h PXR-TG mice had a distinct microbial profile as compared to wild-type mice. This study is the first to unveil the basal functions of PXR and CAR on the gut microbiome.展开更多
Developmental diapause is a widespread strategy for animals to survive seasonal starvation and environmental harshness.Diapaused animals often ration body fat to generate a basal level of energy for enduring survival....Developmental diapause is a widespread strategy for animals to survive seasonal starvation and environmental harshness.Diapaused animals often ration body fat to generate a basal level of energy for enduring survival.How diapause and fat rationing are coupled,however,is poorly understood.The nematode Caenorhabditis elegans excretes pheromones to the environment to induce a diapause form called dauer larva.Through saturated forward genetic screens and CRISPR knockout,we found that dauer pheromones feed back to repress the transcription of ACOX-3,MAOC-1,DHS-28,DAF-22(peroxisomalβ-oxidation enzymes dually involved in pheromone synthesis and fat burning),ALH-4(aldehyde dehydrogenase for pheromone synthesis),PRX-10 and PRX-11(peroxisome assembly and proliferation factors).Dysfunction of these pheromone enzymes and factors relieves the repression.Surprisingly,transcription is repressed not by pheromones excreted but by pheromones endogenous to each animal.The endogenous pheromones regulate the nuclear translocation of HNF4αfamily nuclear receptor NHR-79 and its co-receptor NHR-49,and,repress transcription through the two receptors.The feedback repression maintains pheromone homeostasis,increases fat storage,decreases fat burning,and prolongs dauer lifespan.Thus,the exocrine dauer pheromones possess an unexpected endocrine function to mediate a peroxisome-nucleus crosstalk,coupling dauer diapause to fat rationing.展开更多
To assess the potential endocrine disruptive effects through multiple nuclear receptors (NRs), especially non-steroidal NRs, in municipal wastewater, we examined the agonistic activities on four NRs (estrogen recep...To assess the potential endocrine disruptive effects through multiple nuclear receptors (NRs), especially non-steroidal NRs, in municipal wastewater, we examined the agonistic activities on four NRs (estrogen receptor α, thyroid hormone receptor α, retinoic acid receptor ct and retinoid X receptor α) of untreated and treated wastewater from municipal wastewater treatment plants (WWTPs) in Japan using a yeast two-hybrid assay. Investigation of the influent and effluent of seven WWTPs revealed that agonistic activities against steroidal and non-steroidal NRs were always detected in the influents and partially remained in the effluents. Further investigation of four WWTPs employing conventional activated sludge, pseudo-anoxic-oxic, anoxic-oxic and anaerobic-anoxic-oxic processes revealed that the ability to reduce the agonistic activity against each of the four NRs varies depending on the treatment process. These results indicated that municipal wastewater in Japan commonly contains endocrine disrupting chemicals that exert agonistic activities on steroidal and non-steroidal NRs, and that some of these chemicals are released into the natural aquatic environment. Although the results obtained in yeast assays suggested that measured levels of non-steroidal NR agonists in the effluent of WWTPs were not likely to cause any biological effect, further study is required to assess their possible risks in detail.展开更多
Coactivators and corepressors regulate transcriptionby controlling interactions between sequence-specific transcription factors, the basal transcriptional machinery andthe chromatin environment. This review consider t...Coactivators and corepressors regulate transcriptionby controlling interactions between sequence-specific transcription factors, the basal transcriptional machinery andthe chromatin environment. This review consider the access of nuclear and steroid receptors to chromatin, theiruse of corepressors and coactivators to modify chromatinstructure and the implications for transcriptional control.The assembly of specific nucleoprotein architectures andtargeted histone modification emerge as central controlling elements for gene expression.展开更多
The nuclear receptor superfamily and the transcriptional factors associated with cytokines are inherently different families of signaling molecules and activate gene transcription by binding to their respective respon...The nuclear receptor superfamily and the transcriptional factors associated with cytokines are inherently different families of signaling molecules and activate gene transcription by binding to their respective responsive element.However,it has become increasingly clear from our works and others that nuclear receptors are important regulators of cytokine production and function through complex and varied interactions between these distinct transcriptional factors.This review provides a general overview of the mechanism of action of nuclear receptors and their transcriptional crosstalk with transcriptional factors associated with cytokine transduction pathways.One of the most important mechanistic aspects is protein to protein interaction through a direct or co-regulator-mediated indirect manner.Such crosstalk is crucially involved in physiological and therapeutic roles of nuclear receptors and their iigands in immunity, inflammation and cytokine-related tumors.Cellular & Molecular Immunology.2004;1(6):416-424.展开更多
Colorectal cancer(CRC) is one of the most common human cancers and the cause of about 700000 deaths per year worldwide. Deregulation of the WNT/β-catenin pathway is a key event in CRC initiation. This pathway interac...Colorectal cancer(CRC) is one of the most common human cancers and the cause of about 700000 deaths per year worldwide. Deregulation of the WNT/β-catenin pathway is a key event in CRC initiation. This pathway interacts with other nuclear signaling pathways, including members of the nuclear receptor superfamily and their transcription coregulators. In this review, we provide an overview of the literature dealing with the main coactivators(NCo A-1 to 3, NCo A-6, PGC1-α, p300, CREBBP and MED1) and corepressors(N-Co R1 and 2, NRIP1 and MTA1) of nuclear receptors and summarize their links with the WNT/β-catenin signaling cascade, their expression in CRC and their role in intestinal physiopathology.展开更多
The etiology of most cases of idiopathic bile acid malabsorption (IBAH) is unknown. In this study, a Swedish family with bile acid malabsorption in three consecutive generations was screened for mutations in the ile...The etiology of most cases of idiopathic bile acid malabsorption (IBAH) is unknown. In this study, a Swedish family with bile acid malabsorption in three consecutive generations was screened for mutations in the ileal apical sodium-bile acid cotransporter gene (ASBT; gene symbol, SLC10A2) and in the genes for several of the nuclear receptors known to be important for ASBT expression: the farnesoid X receptor (FXR) and peroxisome proliferator activated receptor alpha (PPARα). The patients presented with a clinical history of idiopathic chronic watery diarrhea, which was responsive to cholestyramine treatment and consistent with IBAH. Bile acid absorption was determined using ^75Se-homocholic acid taurine (SeHCAT); bile acid synthesis was estimated by measuring the plasma levels of 7α-hydroxy-4-cholesten-3-one (C4). The ASBT, FXR, and PPARα genes in the affected and unaffected family members were analyzed using single stranded conformation polymorphism (SSCP), denaturing HPLC, and direct sequencing. No ASBT mutations were identified and the ASBT gene did not segregate with the bile acid malabsorption phenotype. Similarly, no mutations or polymorphisms were identified in the FXR or PPARα genes associated with the bile acid malabsorption phenotype. These studies indicate that the intestinal bile acid malabsorption in these patients cannot be attributed to defects in ASBT. In the absence of apparent ileal disease, alternative explanations such as accelerated transit through the small intestine may be responsible for the IBAM.展开更多
Aim: To investigate the roles of liver X receptors (LXR) in the lipid composition and gene expression regulation in the murine caput epididymidis. LXR are nuclear receptors for oxysterols, molecules derived from ch...Aim: To investigate the roles of liver X receptors (LXR) in the lipid composition and gene expression regulation in the murine caput epididymidis. LXR are nuclear receptors for oxysterols, molecules derived from cholesterol metabolism that are present in mammals as two isoforms: LXRα, which is more specifically expressed in lipid-metabolising tissues, such as liver, adipose and steroidogenic tissues, and macrophages, whereas LXRβ is ubiquitous. Their importance in reproductive physiology has been sustained by the fact that male mice in which the function of both LXR has been disrupted have fertility disturbances starting at the age of 5 months, leading to complete sterility by the age of 9 months. These defects are associated with epididymal epithelial degeneration in caput segments one and two, and with a sperm midpiece fragility, leading to the presence of isolated sperm heads and flagella when luminal contents are recovered from the cauda epididymidis. Methods: The lipid composition of the caput epididymidis of wild-type and LXR-deficient mice was assessed using oil red O staining on tissue cryosections and lipid extraction followed by high performance liquid chromatography or gas chromatography. Gene expression was checked by quantitative real time polymerase chain reaction. Results: Using LXR-deficient mice, we showed an alteration of the lipid composition of the caput epididymidis as well as a significantly decreased expression of the genes encoding SREBPlc, SCD1 and SCD2, involved in fatty acid metabolism. Conclusion: Altogether, these results show that LXR are important regulators of epididymal function, and play a critical role in the lipid maturation processes occurring during sperm epididymal maturation. (Asian J Androl 2007 July; 9: 574-582)展开更多
Retinoids mediate their actions via RARs(retinoic acid receptors)and RXRs(retinoid X receptors).Each classes of these nuclear retinoid receptor is further subdiviede into three species namelyα,βand γ.Recent studies...Retinoids mediate their actions via RARs(retinoic acid receptors)and RXRs(retinoid X receptors).Each classes of these nuclear retinoid receptor is further subdiviede into three species namelyα,βand γ.Recent studies demonstrate that ER-positive HBC cell lines are sensitive and ER-negative cell lines are resistant to growth inhibitory effects of retinoic acid(RA). In this study we look at the expresion of RARs and RXRs in 6 HBC cell lines, we found only RARαmRNA level was strong correlated with ER-status. To further inestigate the major role of RARαin retinoidmediated inhibition of growth, we transfected RARαcDNA in two RA-resistant ER-negative HBC cell lines.Analyses of different clonal populations of RARα transfectants from each cell line revealed growth inhibition by retinoids. Our results demonstrates that RARα Plays a major role in mediating retinoids inhibition of growth in HBC cells and adequate levels are required for such actions.展开更多
Pancreatic ductal adenocarcinoma (PDAC) is the fourth cause of cancer death with an overall survival of 5% at five years. The development of PDAC is characteristically associated to the accumulation of distinctive gen...Pancreatic ductal adenocarcinoma (PDAC) is the fourth cause of cancer death with an overall survival of 5% at five years. The development of PDAC is characteristically associated to the accumulation of distinctive genetic mutations and is preceded by the exposure to several risk factors. Epidemiology has demonstrated that PDAC risk factors may be non-modifiable risks (sex, age, presence of genetic mutations, ethnicity) and modifiable and co-morbidity factors related to the specific habits and lifestyle. Recently it has become evident that obesity and diabetes are two important modifiable risk factors for PDAC. Obesity and diabetes are complex systemic and intertwined diseases and, over the years, experimental evidence indicate that insulin-resistance, alteration of adipokines, especially leptin and adiponectin, oxidative stress and inflammation may play a role in PDAC. Peroxisome proliferator activated receptor-γ (PPARγ) is a nuclear receptor transcription factor that is implicated in the regulation of metabolism, differentiation and inflammation. PPARγ is a key regulator of adipocytes differentiation, regulates insulin and adipokines production and secretion, may modulate inflammation, and it is implicated in PDAC. PPARγ agonists are used in the treatment of diabetes and oxidative stress-associated diseases and have been evaluated for the treatment of PDAC. PPARγ is at the cross-road of diabetes, obesity, and PDAC and it is an interesting target to pharmacologically prevent PDAC in obese and diabetic patients.展开更多
基金Supported by Fondo per gli Investimenti della Ricerca di Base(FIRB)(RBAP10MY35_002)by Ente Cassa di Risparmio di Firenzeby FiorGen ONLUS to Galli A
文摘Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease.
基金Grants from Agencia Nacional de Promoción Científicay Tecnológica (PICT N° 05-26306)Consejo Nacional de Investigaciones Científicasy Técnicas (PIP N° 6442)Universidad Nacional de Rosario,Argentina
文摘The canalicular membrane represents the excretory pole of hepatocytes.Bile is an important route of elimination of potentially toxic endo-and xenobiotics(including drugs and toxins),mediated by the major canalicular transporters:multidrug resistance protein 1(MDR1, ABCB1),also known as P-glycoprotein,multidrug resistance-associated protein 2(MRP2,ABCC2),and the breast cancer resistance protein(BCRP,ABCG2).Their activities depend on regulation of expression and proper localization at the canalicular membrane,as regulated by transcriptional and post-transcriptional events,respectively.At transcriptional level,specific nuclear receptors(NR)s modulated by ligands,co-activators and co-repressors,mediate the physiological requirements of these transporters.This complex system is also responsible for alterations occurring in specific liver pathologies.We briefly describe the major ClassⅡNRs, pregnane X receptor(PXR)and constitutive androstane receptor(CAR),and their role in regulating expression of multidrug resistance proteins.Several therapeutic agents regulate the expression of relevant drug transporters through activation/inactivation of these NRs.We provide some representative examples of the action of therapeutic agents modulating liver drug transporters, which in addition,involve CAR or PXR as mediators.
文摘The recapitulation of primary tumour heterogenity and the existence of a minor sub-population of cancer cells,capable of initiating tumour growth in xenografts on serial passages, led to the hypothesis that cancer stem cells(CSCs) exist. CSCs are present in many tumours, among which is breast cancer. Breast CSCs(BCSCs) are likely to sustain the growth of the primary tumour mass, as wellas to be responsible for disease relapse and metastatic spreading. Consequently, BCSCs represent the most significant target for new drugs in breast cancer therapy. Both the hypoxic condition in BCSCs biology and proinflammatory cytokine network has gained increasing importance in the recent past. Breast stromal cells are crucial components of the tumours milieu and are a major source of inflammatory mediators. Recently, the antiinflammatory role of some nuclear receptors ligands has emerged in several diseases, including breast cancer. Therefore, the use of nuclear receptors ligands may be a valid strategy to inhibit BCSCs viability and consequently breast cancer growth and disease relapse.
基金the National Natural Science Foundation of China,No.31650005.
文摘Major depressive disorder(MDD)is highly prevalent and is a significant cause of mortality and morbidity worldwide.Currently,conventional pharmacological treatments for MDD produce temporary remission in<50%of patients;therefore,there is an urgent need for a wider spectrum of novel antidepressants to target newly discovered underlying disease mechanisms.Accumulated evidence has shown that immune inflammation,particularly inflammasome activity,plays an important role in the pathophysiology of MDD.In this review,we summarize the evidence on nuclear receptors(NRs),such as glucocorticoid receptor,mineralocorticoid receptor,estrogen receptor,aryl hydrocarbon receptor,and peroxisome proliferator-activated receptor,in modulating the inflammasome activity and depression-associated behaviors.This review provides evidence from an endocrine perspective to understand the role of activated NRs in the pathophysiology of MDD,and to provide insight for the discovery of antidepressants with novel mechanisms for this devastating disorder.
基金grants from the National Key Technology R&D Program (No. 2006BAD27B01)Chinese Center for Disease Control and Prevention Dalone Foundation of Dietary Nutrition (No. DIC-200710)a grant from Shenzhen Bureau of Science Technology & Information (No. 200802002)
文摘Objective To explore Effects of marine collagen peptides (MCPs) on markers of metablic nuclear receptors, i.e peroxisome proliferator-activated receptor (PPARs), liver X receptor (LXRs) and farnesoid X receptor (FXRs) in type 2 diabetic patients with/without hypertension. Method Study population consisted of 200 type 2 diabetic patients with/without hypertension and 50 healthy subjects, all of whom were randomly assigned to MCPs-treated diabetics (n=50), placebo-treated diabetics (n=50), MCPs-treated diabetics with hypertension (n=50), placebo-treated diabetics with hypertension (n=50), and healthy controls (n=50). MCPs or placebo (water-soluble starch) were given daily before breakfast and bedtime over three months. Levels of free fatty acid, cytochrome P450, leptin, resistin, adiponectin, bradykinin, NO, and Prostacyclin were determined before intervention, and 1.5 months, and 3 months after intervention. Hypoglycemia and the endpoint events during the study were recorded and compared among the study groups. Result At the end of the study period, MCPs-treated patients showed marked improvement compared with patients receiving placebo. The protection exerted by MCPs seemed more profound in diabetics than in diabetics with hypertension. In particular, after MCPs intervention, levels of free fatty acid, hs-CRP, resistin, Prostacyclin decreased significantly in diabetics and tended to decrease in diabetic and hypertensive patients whereas levels of cytochrome P450, leptin, NO tended to decrease in diabetics with/without hypertension. Meanwhile, levels of adiponectin and bradykinin rose markedly in diabetics following MCPs administration. Conclusion MCPs could offer protection against diabetes and hypertension by affecting levels of molecules involved in diabetic and hypertensive pathogenesis. Regulation on metabolic nuclear receptors by MCPs may be the possible underlying mechanism for its observed effects in the study. Further study into its action may shed light on development of new drugs based on bioactive peptides from marine sources.
基金supported by the SERB(CRC/2022/002149)Wellcome Trust/DBT India Alliance Fellowship[IA/I/16/2/502691].
文摘The onset of metabolic dysfunction-associated steatohepatitis(MASH)or non-alcoholic steatohepatitis(NASH)represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases(MASLD),formerly known as non-alcoholic fatty liver disease(NAFLD).With no pharmacological treat-ment currently available for MASH/NASH,the race is on to develop drugs targeting multiple facets of hepatic metabolism,inflammation,and pro-fibrotic events,which are major drivers of MASH.Nuclear receptors(NRs)regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation.Ligands of NRs may include hormones,lipids,bile acids,and synthetic ligands,which upon binding to NRs regulate the transcriptional activities of target genes.NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH.This review aims to cover the current understanding of NRs,including nuclear hormone receptors,non-steroid hormone receptors,circadian NRs,and orphan NRs,which are currently undergoing clinical trials for MASH treatment,along with NRs that have shown promising results in preclinical studies.
文摘Overexpression of P-glycoprotein (P-gp) encoded by the multidrug resistance gene-1 (MDR-1) is the main mechanism responsible for multidrug resistance (MDR) in a majority of cancer cells. However, the mechanism by which cancer cells acquire high levels of P-gp has not been well defined. Accumulating evidence suggests that nuclear receptors (NRs), especially human pregnane X receptor (PXR), play a crucial role in multidrug resistance. It has been shown that chemotherapeutic drug activates PXR and then enhances P-gp expression. Genetic knockdown or pharmacologic inhibition of PXR led to attenuation of drug-induced MDR1 over expression, implying that NRs may be an effective target to reverse multidrug resistance. Recent investigations suggested that transcriptional activity of NRs is mediated by methylases, the important enzymes involved in epigenetic regulation. Other epigenetic modifications, such as promoter methylation, histone deacetylases and microRNAs, were also found to be involved in activation of MDR1 promoter, though the underlying mechanisms are not thoroughly known. In this review, we summarized recent researches in the regulation of P-gp expression, with particular focus on NRs and epigenetics, aiming to provide references and options to reverse and/or prevent MDR in cancer treatment.
文摘Associate Prof.Grace Liejun Guo is a tenured faculty in the Department of Pharmacology and Toxicology in the School of Pharmacy at the Rutgers University in New Jersey,USA.Dr.Guo graduated from the West China University of Medical Sciences in 1993.In 1997,Dr.Guo obtained a MS degree
基金The work was supported by the Natural Science Foundation of China(81973392,81320108027)the National Key Research and Development Program of China(2017YFE0109900)+2 种基金the Natural Science Foundation of Guangdong Province(2017A030310330,2017A030311018)China Postdoctoral Science Foundation(2019TQ0398)the Fundamental Research Funds for the Central Universities(19ykyjs34).
文摘Non-alcoholic fatty liver disease(NAFLD)has become the leading cause of chronic liver disease in adults and children worldwide.The symptoms of NAFLD range from simple steatosis and non-alcoholic stea-tohepatitis(NASH)to hepatic fibrosis or cirrhosis,even ultimately develops to hepatocellular carcinoma.Nuclear receptors(NRs)are a superfamily of ligand-activated transcription factors,most of which are ligand-activated that control cellular homeostasis in the liver and other tissues.A growing number of studies demonstrated the important role of NRs in NAFLD.In this review,the current findings on the role of NRs in NAFLD are summarized and future perspectives to target NRs for NAFLD are discussed.
基金supported by National Institutes of Health(NIH,USA)grant ES025708,ES030197,GM111381,ES031098the University of Washington Center for Exposures,Diseases,Genomics,and Environment,USA[P30 ES0007033]+2 种基金the Murphy Endowment,USAThe Peer Reviewed Medical Research Program-Investigator Initiated Research Award under Award No.W81XWH-17-1-0479NIH grants(CA 222469,USA)。
文摘Pharmacological activation of the xenobiotic-sensing nuclear receptors pregnane X receptor(PXR) and constitutive androstane receptor(CAR) is well-known to increase drug metabolism and reduce inflammation. Little is known regarding their physiological functions on the gut microbiome. In this study, we discovered bivalent hormetic functions of PXR/CAR modulating the richness of the gut microbiome using genetically engineered mice. The absence of PXR or CAR increased microbial richness, and absence of both receptors synergistically increased microbial richness. PXR and CAR deficiency increased the pro-inflammatory bacteria Helicobacteraceae and Helicobacter. Deficiency in both PXR and CAR increased the relative abundance of Lactobacillus, which has bile salt hydrolase activity, corresponding to decreased primary taurine-conjugated bile acids(BAs) in feces, which may lead to higher internal burden of taurine and unconjugated BAs, both of which are linked to inflammation, oxidative stress, and cytotoxicity. The basal effect of PXR/CAR on the gut microbiome was distinct from pharmacological and toxicological activation of these receptors. Common PXR/CAR-targeted bacteria were identified, the majority of which were suppressed by these receptors. h PXR-TG mice had a distinct microbial profile as compared to wild-type mice. This study is the first to unveil the basal functions of PXR and CAR on the gut microbiome.
基金supported by the National Natural Science Foundation of China(91857106 and 31770865)by the CGC,which is funded by NIH Office of Research Infrastructure Programs(P40 OD010440)of USAby the Mitani Lab through the National Bio-Resource Project of the MEXT of Japan。
文摘Developmental diapause is a widespread strategy for animals to survive seasonal starvation and environmental harshness.Diapaused animals often ration body fat to generate a basal level of energy for enduring survival.How diapause and fat rationing are coupled,however,is poorly understood.The nematode Caenorhabditis elegans excretes pheromones to the environment to induce a diapause form called dauer larva.Through saturated forward genetic screens and CRISPR knockout,we found that dauer pheromones feed back to repress the transcription of ACOX-3,MAOC-1,DHS-28,DAF-22(peroxisomalβ-oxidation enzymes dually involved in pheromone synthesis and fat burning),ALH-4(aldehyde dehydrogenase for pheromone synthesis),PRX-10 and PRX-11(peroxisome assembly and proliferation factors).Dysfunction of these pheromone enzymes and factors relieves the repression.Surprisingly,transcription is repressed not by pheromones excreted but by pheromones endogenous to each animal.The endogenous pheromones regulate the nuclear translocation of HNF4αfamily nuclear receptor NHR-79 and its co-receptor NHR-49,and,repress transcription through the two receptors.The feedback repression maintains pheromone homeostasis,increases fat storage,decreases fat burning,and prolongs dauer lifespan.Thus,the exocrine dauer pheromones possess an unexpected endocrine function to mediate a peroxisome-nucleus crosstalk,coupling dauer diapause to fat rationing.
基金supported in part by the Environment Research and Technology Development Fund (C-0802) of the Ministry of the Environment,Japanthe Grant-in-Aid for Young Scientists (B) 20760362 from the Ministry of Education,Culture,Sports,Science and Technology,Japan
文摘To assess the potential endocrine disruptive effects through multiple nuclear receptors (NRs), especially non-steroidal NRs, in municipal wastewater, we examined the agonistic activities on four NRs (estrogen receptor α, thyroid hormone receptor α, retinoic acid receptor ct and retinoid X receptor α) of untreated and treated wastewater from municipal wastewater treatment plants (WWTPs) in Japan using a yeast two-hybrid assay. Investigation of the influent and effluent of seven WWTPs revealed that agonistic activities against steroidal and non-steroidal NRs were always detected in the influents and partially remained in the effluents. Further investigation of four WWTPs employing conventional activated sludge, pseudo-anoxic-oxic, anoxic-oxic and anaerobic-anoxic-oxic processes revealed that the ability to reduce the agonistic activity against each of the four NRs varies depending on the treatment process. These results indicated that municipal wastewater in Japan commonly contains endocrine disrupting chemicals that exert agonistic activities on steroidal and non-steroidal NRs, and that some of these chemicals are released into the natural aquatic environment. Although the results obtained in yeast assays suggested that measured levels of non-steroidal NR agonists in the effluent of WWTPs were not likely to cause any biological effect, further study is required to assess their possible risks in detail.
文摘Coactivators and corepressors regulate transcriptionby controlling interactions between sequence-specific transcription factors, the basal transcriptional machinery andthe chromatin environment. This review consider the access of nuclear and steroid receptors to chromatin, theiruse of corepressors and coactivators to modify chromatinstructure and the implications for transcriptional control.The assembly of specific nucleoprotein architectures andtargeted histone modification emerge as central controlling elements for gene expression.
文摘The nuclear receptor superfamily and the transcriptional factors associated with cytokines are inherently different families of signaling molecules and activate gene transcription by binding to their respective responsive element.However,it has become increasingly clear from our works and others that nuclear receptors are important regulators of cytokine production and function through complex and varied interactions between these distinct transcriptional factors.This review provides a general overview of the mechanism of action of nuclear receptors and their transcriptional crosstalk with transcriptional factors associated with cytokine transduction pathways.One of the most important mechanistic aspects is protein to protein interaction through a direct or co-regulator-mediated indirect manner.Such crosstalk is crucially involved in physiological and therapeutic roles of nuclear receptors and their iigands in immunity, inflammation and cytokine-related tumors.Cellular & Molecular Immunology.2004;1(6):416-424.
基金Supported by SIRIC and the PHC-UTIQUE program,No.16G 0805PHC-UTIQUE program,No.16G 0805+1 种基金Tunisian government(Bourse d’alternance)INSERM,Universitéde Montpellier,INCa,SIRIC Montpellier,the Institut régional du Cancer de Montpellier
文摘Colorectal cancer(CRC) is one of the most common human cancers and the cause of about 700000 deaths per year worldwide. Deregulation of the WNT/β-catenin pathway is a key event in CRC initiation. This pathway interacts with other nuclear signaling pathways, including members of the nuclear receptor superfamily and their transcription coregulators. In this review, we provide an overview of the literature dealing with the main coactivators(NCo A-1 to 3, NCo A-6, PGC1-α, p300, CREBBP and MED1) and corepressors(N-Co R1 and 2, NRIP1 and MTA1) of nuclear receptors and summarize their links with the WNT/β-catenin signaling cascade, their expression in CRC and their role in intestinal physiopathology.
基金Supported by grants from the Swedish Research Council, the Karolinska Institutet and the Swedish Society of Medicine (to CE) and National Institutes of Health grants DK-47987 (to PAD)
文摘The etiology of most cases of idiopathic bile acid malabsorption (IBAH) is unknown. In this study, a Swedish family with bile acid malabsorption in three consecutive generations was screened for mutations in the ileal apical sodium-bile acid cotransporter gene (ASBT; gene symbol, SLC10A2) and in the genes for several of the nuclear receptors known to be important for ASBT expression: the farnesoid X receptor (FXR) and peroxisome proliferator activated receptor alpha (PPARα). The patients presented with a clinical history of idiopathic chronic watery diarrhea, which was responsive to cholestyramine treatment and consistent with IBAH. Bile acid absorption was determined using ^75Se-homocholic acid taurine (SeHCAT); bile acid synthesis was estimated by measuring the plasma levels of 7α-hydroxy-4-cholesten-3-one (C4). The ASBT, FXR, and PPARα genes in the affected and unaffected family members were analyzed using single stranded conformation polymorphism (SSCP), denaturing HPLC, and direct sequencing. No ASBT mutations were identified and the ASBT gene did not segregate with the bile acid malabsorption phenotype. Similarly, no mutations or polymorphisms were identified in the FXR or PPARα genes associated with the bile acid malabsorption phenotype. These studies indicate that the intestinal bile acid malabsorption in these patients cannot be attributed to defects in ASBT. In the absence of apparent ileal disease, alternative explanations such as accelerated transit through the small intestine may be responsible for the IBAM.
文摘Aim: To investigate the roles of liver X receptors (LXR) in the lipid composition and gene expression regulation in the murine caput epididymidis. LXR are nuclear receptors for oxysterols, molecules derived from cholesterol metabolism that are present in mammals as two isoforms: LXRα, which is more specifically expressed in lipid-metabolising tissues, such as liver, adipose and steroidogenic tissues, and macrophages, whereas LXRβ is ubiquitous. Their importance in reproductive physiology has been sustained by the fact that male mice in which the function of both LXR has been disrupted have fertility disturbances starting at the age of 5 months, leading to complete sterility by the age of 9 months. These defects are associated with epididymal epithelial degeneration in caput segments one and two, and with a sperm midpiece fragility, leading to the presence of isolated sperm heads and flagella when luminal contents are recovered from the cauda epididymidis. Methods: The lipid composition of the caput epididymidis of wild-type and LXR-deficient mice was assessed using oil red O staining on tissue cryosections and lipid extraction followed by high performance liquid chromatography or gas chromatography. Gene expression was checked by quantitative real time polymerase chain reaction. Results: Using LXR-deficient mice, we showed an alteration of the lipid composition of the caput epididymidis as well as a significantly decreased expression of the genes encoding SREBPlc, SCD1 and SCD2, involved in fatty acid metabolism. Conclusion: Altogether, these results show that LXR are important regulators of epididymal function, and play a critical role in the lipid maturation processes occurring during sperm epididymal maturation. (Asian J Androl 2007 July; 9: 574-582)
文摘Retinoids mediate their actions via RARs(retinoic acid receptors)and RXRs(retinoid X receptors).Each classes of these nuclear retinoid receptor is further subdiviede into three species namelyα,βand γ.Recent studies demonstrate that ER-positive HBC cell lines are sensitive and ER-negative cell lines are resistant to growth inhibitory effects of retinoic acid(RA). In this study we look at the expresion of RARs and RXRs in 6 HBC cell lines, we found only RARαmRNA level was strong correlated with ER-status. To further inestigate the major role of RARαin retinoidmediated inhibition of growth, we transfected RARαcDNA in two RA-resistant ER-negative HBC cell lines.Analyses of different clonal populations of RARα transfectants from each cell line revealed growth inhibition by retinoids. Our results demonstrates that RARα Plays a major role in mediating retinoids inhibition of growth in HBC cells and adequate levels are required for such actions.
基金Supported by Fondo per gli Investimenti della Ricerca di BaseNo.RBAP10MY35_002+1 种基金Ente Cassa di Risparmio di Firenzeand Fior Gen ONLUS to Galli A
文摘Pancreatic ductal adenocarcinoma (PDAC) is the fourth cause of cancer death with an overall survival of 5% at five years. The development of PDAC is characteristically associated to the accumulation of distinctive genetic mutations and is preceded by the exposure to several risk factors. Epidemiology has demonstrated that PDAC risk factors may be non-modifiable risks (sex, age, presence of genetic mutations, ethnicity) and modifiable and co-morbidity factors related to the specific habits and lifestyle. Recently it has become evident that obesity and diabetes are two important modifiable risk factors for PDAC. Obesity and diabetes are complex systemic and intertwined diseases and, over the years, experimental evidence indicate that insulin-resistance, alteration of adipokines, especially leptin and adiponectin, oxidative stress and inflammation may play a role in PDAC. Peroxisome proliferator activated receptor-γ (PPARγ) is a nuclear receptor transcription factor that is implicated in the regulation of metabolism, differentiation and inflammation. PPARγ is a key regulator of adipocytes differentiation, regulates insulin and adipokines production and secretion, may modulate inflammation, and it is implicated in PDAC. PPARγ agonists are used in the treatment of diabetes and oxidative stress-associated diseases and have been evaluated for the treatment of PDAC. PPARγ is at the cross-road of diabetes, obesity, and PDAC and it is an interesting target to pharmacologically prevent PDAC in obese and diabetic patients.