The water level control system of steam generator in a pressurized water reactor of nuchear power plant plays an important role which effects the water level control of the steam generator are due the reverse dynamics...The water level control system of steam generator in a pressurized water reactor of nuchear power plant plays an important role which effects the water level control of the steam generator are due the reverse dynamics behavior,so the transient analysis of the steam generator should firstly solve their mathematical models.For determination of dynamic behavior and design and testing of the control system, a nonlinear math model is developed using one dimensional conservation equations of mass,momentum and energy of primary and secondary sides of the steam generator. The nonlinear model is verified with standard power plant data available in the references, then the steady states and transient calculations are performed for full power to 5% power reactor operation of the steam generator of Chinese Qinshan Nuclear Power Plant.展开更多
This paper reviews sulfur-induced passivity degradation of nuclear materials with emphasis on steam generator(SG)alloys. The state of arts on this topic concerning thermodynamic calculation and experimental data has b...This paper reviews sulfur-induced passivity degradation of nuclear materials with emphasis on steam generator(SG)alloys. The state of arts on this topic concerning thermodynamic calculation and experimental data has been reviewed. Thermodynamic calculation results indicate that the distribution of sulfur species strongly depends on p H and temperature. Experimental data show that solution p H, temperature and solution chemistries can significantly affect the electrochemical behaviors of SG materials and the underlying degradation mechanisms. Some issues when conducting corrosion tests at high temperature should be paid attention to, such as the dissolution of the autoclave, which may affect the facticity of the experimental results.展开更多
New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and w...New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and which correspond to the evolutionary development of such installations. While developing these solutions, the available experience in creating and operating So</span><span>viet pilot and commercial power plants cooled with lead-bismuth coolants</span><span> was used, including investigations, primarily experimental ones, carried out by team of authors in justification of a capacity range (50</span></span><span> </span><span>-</span><span> </span><span>250 MW) of low and medium-powered reactor plants with horizontal steam generators (BRS-</span><span> </span><span>GPG) proposed and elaborated at the NNSTU.展开更多
针对双钨极单热丝自动TIG工艺原理和技术优越性进行探索,采用双钨极单热丝自动TIG工艺在SA-508 Grade 3 Class 1锻件管板上进行镍基合金堆焊,并对堆焊层的各项性能进行试验研究,验证该方法在管板堆焊技术中应用的可行性。通过对焊接工...针对双钨极单热丝自动TIG工艺原理和技术优越性进行探索,采用双钨极单热丝自动TIG工艺在SA-508 Grade 3 Class 1锻件管板上进行镍基合金堆焊,并对堆焊层的各项性能进行试验研究,验证该方法在管板堆焊技术中应用的可行性。通过对焊接工艺参数的优化,该工艺方法在核电产品及管壳式换热器类设备制造中进行推广应用,熔敷效率可达到2.5~6 kg/h,工艺熔敷效率约为普通单热丝自动TIG的3倍,可在有效保证核电产品管板镍基堆焊层质量的前提下,缩短核电产品的制造周期。展开更多
文摘The water level control system of steam generator in a pressurized water reactor of nuchear power plant plays an important role which effects the water level control of the steam generator are due the reverse dynamics behavior,so the transient analysis of the steam generator should firstly solve their mathematical models.For determination of dynamic behavior and design and testing of the control system, a nonlinear math model is developed using one dimensional conservation equations of mass,momentum and energy of primary and secondary sides of the steam generator. The nonlinear model is verified with standard power plant data available in the references, then the steady states and transient calculations are performed for full power to 5% power reactor operation of the steam generator of Chinese Qinshan Nuclear Power Plant.
基金Supported by the National Basic Research Program of China("973"Program,No.2014CB046805)National Natural Science Foundation of China(No.51131007,No.51371124)+1 种基金Natural Science Foundation of Tianjin(No.14JCYBJC17700)the Open-Ended Fund of the Key Laboratory of Nuclear Materials and Safety Assessment(Institute of Metal Research,Chinese Academy of Sciences,China)(No.2016NMSAKF02)
文摘This paper reviews sulfur-induced passivity degradation of nuclear materials with emphasis on steam generator(SG)alloys. The state of arts on this topic concerning thermodynamic calculation and experimental data has been reviewed. Thermodynamic calculation results indicate that the distribution of sulfur species strongly depends on p H and temperature. Experimental data show that solution p H, temperature and solution chemistries can significantly affect the electrochemical behaviors of SG materials and the underlying degradation mechanisms. Some issues when conducting corrosion tests at high temperature should be paid attention to, such as the dissolution of the autoclave, which may affect the facticity of the experimental results.
文摘New design solutions have been proposed for a BRS-GPG type reactor circuit, which are different from transport and stationary low and medium-powered reactor installations cooled with heavy liquid-metal coolants, and which correspond to the evolutionary development of such installations. While developing these solutions, the available experience in creating and operating So</span><span>viet pilot and commercial power plants cooled with lead-bismuth coolants</span><span> was used, including investigations, primarily experimental ones, carried out by team of authors in justification of a capacity range (50</span></span><span> </span><span>-</span><span> </span><span>250 MW) of low and medium-powered reactor plants with horizontal steam generators (BRS-</span><span> </span><span>GPG) proposed and elaborated at the NNSTU.