In this article,we investigate the dependence of nuclear temperature on emitting source neutron-proton(N/Z)asymmetry with light charged particles(LCPs)and intermediate mass fragments(IMFs)generated from intermediate-v...In this article,we investigate the dependence of nuclear temperature on emitting source neutron-proton(N/Z)asymmetry with light charged particles(LCPs)and intermediate mass fragments(IMFs)generated from intermediate-velocity sources in thirteen reaction systems with different N/Z asymmetries,^(64)Zn on^(112)Sn,and^(70)Zn,^(64)Ni on^(112,124)Sn,^(58,64)Ni,^(197)Au,and^(232)Th at 40 MeV/nucleon.The apparent temperature values of LCPs and IMFs from different systems are deduced from the measured yields using two helium-related and eight carbon-related double isotope ratio thermometers,respectively.Then,the sequential decay effect on the experimental apparent temperature deduction with the double isotope ratio thermometers is quantitatively corrected explicitly with the aid of the quantum statistical model.The present treatment is an improvement compared to our previous studies in which an indirect method was adopted to qualitatively consider the sequential decay effect.A negligible N/Z asymmetry dependence of the real temperature after the correction is quantitatively addressed in heavy-ion reactions at the present intermediate energy,where a change of o.1 units in source N/Z asymmetry corresponds to an absolute change in temperature of an order of 0.03 to 0.29 MeV on average for LCPs and IMFs.This conclusion is in close agreement with that inferred qualitatively via the indirect method in our previous studies.展开更多
The chemical stability of simulated waste forms Zr_(1–x)Nd_xSiO_(4–x/2) was investigated using the static leach test(MCC-1) with lixiviants of three pH values(pH=4, 6.7 and 10) at three temperature points(4...The chemical stability of simulated waste forms Zr_(1–x)Nd_xSiO_(4–x/2) was investigated using the static leach test(MCC-1) with lixiviants of three pH values(pH=4, 6.7 and 10) at three temperature points(40, 90 and 150 oC) for periods ranging from 1 to 42 d, and the influence of temperature, pH, as well as their combined effects were explored in detail. The results showed that all the normalized release rate of Nd firstly decreased with leaching time and closed to equilibrium after 14 d. As the temperature increased, the normalized release rate of Nd also increased, but it was no more than 3×10^(–5) g/(m^2·d). And, the normalized release rate of Nd reached the highest values(~5×10^(–5) g/(m^2·d)) when pH=4, whilst the normalized release rate of Nd remained the lowest value(~1×10^(–5) g/(m^2·d)) near neutral environment(pH=6.7).展开更多
The prompt fission neutron spectra for the neutron-induced fission of 235U at En 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model, in which the nonconstant and con- stant temperatures ...The prompt fission neutron spectra for the neutron-induced fission of 235U at En 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model, in which the nonconstant and con- stant temperatures related to the Fermi gas model are taken into account. The calculated prompt fission neutron spectra reproduce the experimental data well. For the n(thermal)+235 U reaction, the average nuclear temperature of the fission fragment, and the probability distribution of the nuclear temperature, are discussed and compared with the Los Alamos model. The energy carried away by γ rays emitted from each fragment is also obtained and the results are in good agreement with the existing experimental data.展开更多
The effects of pre-equilibrium emission and secondary decay on the determination of the freeze-out volume are investigated using the isospin-dependent quantum molecular dynamics model accompanied by the statistical de...The effects of pre-equilibrium emission and secondary decay on the determination of the freeze-out volume are investigated using the isospin-dependent quantum molecular dynamics model accompanied by the statistical decay model GEMINI.Small-mass projectiles and large-mass targets with central collisions are studied at intermediate energies.It is revealed that the proton yields of pre-equilibrium emission are smaller than those of secondary decay.However,the determination of the freeze-out volume from the proton yields is more easily affected by pre-equilibrium emission.Moreover,the percentage of proton yields in the freezeout stage is found to be approxim-ately 50%.展开更多
基金Supported by the National Natural Science Foundation of China(12275186,11705242,12175156,11805138,11905120)the Fundamental Research Funds For the Central Universities in China(YJ201954,YJ201820)。
文摘In this article,we investigate the dependence of nuclear temperature on emitting source neutron-proton(N/Z)asymmetry with light charged particles(LCPs)and intermediate mass fragments(IMFs)generated from intermediate-velocity sources in thirteen reaction systems with different N/Z asymmetries,^(64)Zn on^(112)Sn,and^(70)Zn,^(64)Ni on^(112,124)Sn,^(58,64)Ni,^(197)Au,and^(232)Th at 40 MeV/nucleon.The apparent temperature values of LCPs and IMFs from different systems are deduced from the measured yields using two helium-related and eight carbon-related double isotope ratio thermometers,respectively.Then,the sequential decay effect on the experimental apparent temperature deduction with the double isotope ratio thermometers is quantitatively corrected explicitly with the aid of the quantum statistical model.The present treatment is an improvement compared to our previous studies in which an indirect method was adopted to qualitatively consider the sequential decay effect.A negligible N/Z asymmetry dependence of the real temperature after the correction is quantitatively addressed in heavy-ion reactions at the present intermediate energy,where a change of o.1 units in source N/Z asymmetry corresponds to an absolute change in temperature of an order of 0.03 to 0.29 MeV on average for LCPs and IMFs.This conclusion is in close agreement with that inferred qualitatively via the indirect method in our previous studies.
基金Project supported by the National Natural Science Foundation of China(41302028,41302029,21507105)Thousand Youth Talents Plan(Y42H831301)+3 种基金Key Project of Sichuan Education Department(14ZA0099,15ZB0116)Foundation of Laboratory of National Defense Key Discipline for Nuclear Waste and Environmental Safety,Southwest University of Science and Technology(15yyhk10)the Doctor Foundation in Southwest University of Science and Technology(10zx7126)Hebei Science and Technology Support Program(15211121)
文摘The chemical stability of simulated waste forms Zr_(1–x)Nd_xSiO_(4–x/2) was investigated using the static leach test(MCC-1) with lixiviants of three pH values(pH=4, 6.7 and 10) at three temperature points(40, 90 and 150 oC) for periods ranging from 1 to 42 d, and the influence of temperature, pH, as well as their combined effects were explored in detail. The results showed that all the normalized release rate of Nd firstly decreased with leaching time and closed to equilibrium after 14 d. As the temperature increased, the normalized release rate of Nd also increased, but it was no more than 3×10^(–5) g/(m^2·d). And, the normalized release rate of Nd reached the highest values(~5×10^(–5) g/(m^2·d)) when pH=4, whilst the normalized release rate of Nd remained the lowest value(~1×10^(–5) g/(m^2·d)) near neutral environment(pH=6.7).
基金Supported by IAEA-CRP(15905)the State Key Laboratory of Nuclear Physics and Technology,Peking University(SKL-NPT)
文摘The prompt fission neutron spectra for the neutron-induced fission of 235U at En 5 MeV are calculated using nuclear evaporation theory with a semi-empirical model, in which the nonconstant and con- stant temperatures related to the Fermi gas model are taken into account. The calculated prompt fission neutron spectra reproduce the experimental data well. For the n(thermal)+235 U reaction, the average nuclear temperature of the fission fragment, and the probability distribution of the nuclear temperature, are discussed and compared with the Los Alamos model. The energy carried away by γ rays emitted from each fragment is also obtained and the results are in good agreement with the existing experimental data.
基金Supported by the National Natural Science Foundation of China (11905018)Scientific and Technological Innovation Programs of Higher Education Institutions of Shanxi Province,China (2019L0908)
文摘The effects of pre-equilibrium emission and secondary decay on the determination of the freeze-out volume are investigated using the isospin-dependent quantum molecular dynamics model accompanied by the statistical decay model GEMINI.Small-mass projectiles and large-mass targets with central collisions are studied at intermediate energies.It is revealed that the proton yields of pre-equilibrium emission are smaller than those of secondary decay.However,the determination of the freeze-out volume from the proton yields is more easily affected by pre-equilibrium emission.Moreover,the percentage of proton yields in the freezeout stage is found to be approxim-ately 50%.