期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Experimental Study on the Dependency of Ice Nucleation Active Surface Site Density on ATD Aerosol Size
1
作者 Franco Belosi Gianni Santachiara 《Atmospheric and Climate Sciences》 2021年第3期426-440,共15页
In light of the percentage of Earth’s cloud coverage, heterogeneous ice nucleation in clouds is the most important global-scale pathway. More recent parameterizations of ice nucleation processes in the atmosphere are... In light of the percentage of Earth’s cloud coverage, heterogeneous ice nucleation in clouds is the most important global-scale pathway. More recent parameterizations of ice nucleation processes in the atmosphere are based on the concept of ice nucleation active surface site density (<i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;">). It is usually assumed that </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> is independent of time and aerosol size distribution, </span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> that the surface properties of aerosols of the same species do not vary with size. However, the independence of </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> on aerosol size for every species has been questioned. This study presents the results of ice nucleation processes of ATD laboratory-generated aerosol (particle diameters of 0 - 3 μm). Ice nucleation in the condensation mode was performed in a Dynamic Filter Processing Cham- ber at temperatures of </span><span style="font-family:;" "=""><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span></span><span style="font-family:Verdana;">18<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#176;</span>C and </span><span style="font-family:Verdana;"><span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#45;</span></span><span><span style="font-family:Verdana;">22<span style="color:#4F4F4F;font-family:-apple-system, "font-size:16px;white-space:normal;background-color:#FFFFFF;">&#176;</span>C, with a saturation ratio with respect to water of 1.02. Results show that </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> increased by lowering the nucleation temperature, and was also dependent on the particle size. The </span><i><span style="font-family:Verdana;">n</span><sub><span style="font-family:Verdana;">s</span></sub></i><span style="font-family:Verdana;"> of particles collected on the filters, after a 0.5 μm D</span><sub><span style="font-family:Verdana;">50</span></sub><span style="font-family:Verdana;"> cut-off cyclone, resulted statistically higher with respect to the values obtained from the particles collected on total filters. The results obtained suggest the need for further investigation of </span><i><span style="font-family:Verdana;">n</span></i><sub><span style="font-family:Verdana;">s</span></sub><span style="font-family:Verdana;"> dependence of same composition aerosol particles with a view to support weather and climate predictions.</span></span></span> 展开更多
关键词 Ice Activated Fraction Ice nucleation Active Surface Site density Condensation Freezing
下载PDF
Influence of Surface Ultrasonic Scratching Pretreatment on Diamond Nucleation
2
作者 WANG Sigen TANG Weizhong LU Fanxiu(Department of Materials Science and Engineering,USTB, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第1期36-38,共3页
Influence of the surface ultrasonic scratching pretreatment on diamond nucletion has been studied.Diamond films have been deposited on Si(100) by hot-filament chemical vapour deposition and characterized by scanning e... Influence of the surface ultrasonic scratching pretreatment on diamond nucletion has been studied.Diamond films have been deposited on Si(100) by hot-filament chemical vapour deposition and characterized by scanning electron microscopy. 1.5~40μm diamond powders and mixtures of 1.5~5μm diamond as well as 5~20μm TaC powders were used in the ultrasonic scratching pretreatment. The experiment results show that thediamond nucleation density increases with increment of diamond powders size, and a mixture of diamond and TaCpowders enhances diamond nucleation much more greatly than that of diamond powders alone, especially when thesize of diamond powdets is not very large. 展开更多
关键词 CVD diamond nucleation density nucleation enhancement methods
下载PDF
Influence of methane on hot filament CVD diamond films deposited on high-speed steel substrates with WC-Co interlayer 被引量:1
3
作者 王玲 魏秋平 +2 位作者 余志明 王志辉 田孟昆 《Journal of Central South University》 SCIE EI CAS 2011年第6期1819-1824,共6页
Diamond films were deposited on high-speed steel substrates by hot filament chemical vapor deposition (HFCVD) method. To minimize the early formation of graphite and to enhance the diamond film adhesion, a WC-Co coa... Diamond films were deposited on high-speed steel substrates by hot filament chemical vapor deposition (HFCVD) method. To minimize the early formation of graphite and to enhance the diamond film adhesion, a WC-Co coating was used as an interlayer on the steel substrates by high velocity oxy-fuel spraying. The effects of methane content on nucleation, quality, residual stress and adhesion of diamond films were investigated. The results indicate that the increasing methane content leads to the increase in nucleation density, residual stress, the degradation of quality and adhesion of diamond films. Diamond films deposited on high-speed steel (HSS) substrate with a WC-Co interlayer exhibit high nucleation density and good adhesion under the condition of the methane content initially set to be a higher value (4%, volume fraction) for 30 min, and then reduced to 2% for subsequent growth at pressure of 3 kPa and substrate temperature of 800 ℃. 展开更多
关键词 diamond film WC-Co interlayer METHANE nucleation density ADHESION
下载PDF
Step-edge controlled fast growth of wafer-scale MoSe_(2)films by MOCVD
4
作者 Rui Ji Jing Liao +13 位作者 Lintao Li Rongji Wen Mengjie Liu Yifeng Ren Jianghua Wu Yunrui Song Minru Qi Zhixing Qiao Liwei Liu Chengbing Qin Yu Deng Yongtao Tian Suotang Jia Yufeng Hao 《Nano Research》 SCIE EI CSCD 2023年第7期9577-9583,共7页
Two-dimensional(2D)transition metal dichalcogenides(TMDCs),due to their unique physical properties,have a wide range of applications in the next generation of electronics,optoelectronics,and valleytronics.Large-scale ... Two-dimensional(2D)transition metal dichalcogenides(TMDCs),due to their unique physical properties,have a wide range of applications in the next generation of electronics,optoelectronics,and valleytronics.Large-scale preparation of high-quality TMDCs films is critical to realize these potential applications.Here we report a study on metal-organic chemical vapor deposition(MOCVD)growth of wafer-scale MoSe_(2)films guided by the crystalline step edges of miscut sapphire wafers.We established that the nucleation density and growth rate of MoSe_(2)films were positively correlated with the step-edge density and negatively with the growth temperature.At a certain temperature,the MoSe_(2)domains on the substrate with high step-edge density grow faster than that with low density.As a result,wafer-scale and continuous MoSe_(2)films can be formed in a short duration(30 min).The MoSe_(2)films are of high crystalline quality,as confirmed by systematic Raman and photoluminescence(PL)measurements.The results provide an important methodology for the rapid growth of wafer-scale TMDCs,which may promote the application of 2D semiconductors. 展开更多
关键词 MoSe_(2) nucleation density transition metal dichalcogenides metal-organic chemical vapor deposition(MOCVD) waferscale two-dimensional(2D)semiconductor
原文传递
Reexamination of Correlations for Nucleate SiteDistribution on Boiling Surface by Fractal Theory 被引量:4
5
作者 Yang Chunxin(University of Aeronautics and Astronautics, 100083 Beijing, China) 《Journal of Thermal Science》 SCIE EI CAS CSCD 1997年第2期128-131,共4页
Nucleate site distribution plays an essential role in nucleate boiling process. In this paper1 it is pointed out that the size and spatial distribution density of nucleate sites presented on real boiling surface can b... Nucleate site distribution plays an essential role in nucleate boiling process. In this paper1 it is pointed out that the size and spatial distribution density of nucleate sites presented on real boiling surface can be described by the normalized fractal distribution function, and the physical meaning of parameters involved in some experimental correlations proposed by early investigations are identified according to fractal distribution function. It is further suggested that the surface micro geometry characteristics such as the shape of cavities should be described and analyzed qualitatively by using fractal theory. 展开更多
关键词 nucleate site distribution density nucleate boiling fractal theory
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部