Viral diseases represent one of the major threats for salmonids aquaculture.Early detection and identification of viral pathogens is the main prerequisite prior to undertaking effective prevention and control measures...Viral diseases represent one of the major threats for salmonids aquaculture.Early detection and identification of viral pathogens is the main prerequisite prior to undertaking effective prevention and control measures.Rapid,sensitive,efficient and portable detection method is highly essential for fish viral diseases detection.Biosensor strategies are highly prevalent and fulfill the expanding demands of on-site detection with fast response,cost-effectiveness,high sensitivity,and selectivity.With the development of material science,the nucleic acid biosensors fabricated by semiconductor have shown great potential in rapid and early detection or screening for diseases at salmonids fisheries.This paper reviews the current detection development of salmonids viral diseases.The present limitations and challenges of salmonids virus diseases surveillance and early detection are presented.Novel nucleic acid semiconductor biosensors are briefly reviewed.The perspective and potential application of biosensors in the on-site detection of salmonids diseases are discussed.展开更多
Screening tests for blood donations are based upon sensitivity, cost-effectiveness and their suitability for high-throughput testing. Enzyme immunoassay (EIAs) for hepatitis C virus (HCV) antibodies were the initial s...Screening tests for blood donations are based upon sensitivity, cost-effectiveness and their suitability for high-throughput testing. Enzyme immunoassay (EIAs) for hepatitis C virus (HCV) antibodies were the initial screening tests introduced. The ”first generation“ antibody EIAs detected seroconversion after unduly long infectious window period. Improved HCV antibody assays still had an infectious window period around 66 d. HCV core antigen EIAs shortened the window period considerably, but high costs did not lead to widespread acceptance. A fourth-generation HCV antigen and antibody assay (combination EIA) is more convenient as two infectious markers of HCV are detected in the same assay. Molecular testing for HCV-RNA utilizing nucleic acid amplification technology (NAT) is the most sensitive assay and shortens the window period to only 4 d. Implementation of NAT in many developed countries around the world has resulted in dramatic reductions in transfusion transmissible HCV and relative risk is now < 1 per million donations. However, HCV serology still continues to be retained as some donations are serology positive but NAT negative. In resource constrained countries HCV screening is highly variable, depending upon infrastructure, trained manpower and financial resource. Rapid tests which do not require instrumentation and are simple to perform are used in many small and remotely located blood centres. The sensitivity as compared to EIAs is less and wherever feasible HCV antibody EIAs are most frequently used screening assays. Efforts have been made to implement combined antigen-antibody assays and even NAT in some of these countries.展开更多
BACKGROUND Rapid molecular testing has revolutionized the management of suspected viral meningitis and encephalitis by providing an etiological diagnosis in<90 min with potential to improve outcomes and shorten inp...BACKGROUND Rapid molecular testing has revolutionized the management of suspected viral meningitis and encephalitis by providing an etiological diagnosis in<90 min with potential to improve outcomes and shorten inpatient stays.However,use of molecular assays can vary widely.AIM To evaluate current practice for molecular testing of pediatric cerebrospinal fluid(CSF)samples across the United Kingdom using a structured questionnaire.METHODS A structured telephone questionnaire survey was conducted between July and August 2020.Data was collected on the availability of viral CSF nucleic acid amplification testing(NAAT),criteria used for testing and turnaround times including the impact of the coronavirus disease 2019 pandemic.RESULTS Of 196/212(92%)microbiology laboratories responded;63/196(32%)were excluded from final analysis as they had no on-site microbiology laboratory and outsourced their samples.Of 133 Laboratories included in the study,47/133(35%)had onsite facilities for viral CSF NAAT.Hospitals currently undertaking onsite NAAT(n=47)had much faster turnaround times with 39 centers(83%)providing results in≤24 h as compared to those referring samples to neighboring laboratories(5/86;6%).CONCLUSION Onsite/near-patient rapid NAAT(including polymerase chain reaction)is recommended wherever possible to optimize patient management in the acute setting.展开更多
基金supported by the National Key Research and Development Program of China(2022YFC2601304)National Key Research and Development Program of China(2022YFC2602100)。
文摘Viral diseases represent one of the major threats for salmonids aquaculture.Early detection and identification of viral pathogens is the main prerequisite prior to undertaking effective prevention and control measures.Rapid,sensitive,efficient and portable detection method is highly essential for fish viral diseases detection.Biosensor strategies are highly prevalent and fulfill the expanding demands of on-site detection with fast response,cost-effectiveness,high sensitivity,and selectivity.With the development of material science,the nucleic acid biosensors fabricated by semiconductor have shown great potential in rapid and early detection or screening for diseases at salmonids fisheries.This paper reviews the current detection development of salmonids viral diseases.The present limitations and challenges of salmonids virus diseases surveillance and early detection are presented.Novel nucleic acid semiconductor biosensors are briefly reviewed.The perspective and potential application of biosensors in the on-site detection of salmonids diseases are discussed.
文摘Screening tests for blood donations are based upon sensitivity, cost-effectiveness and their suitability for high-throughput testing. Enzyme immunoassay (EIAs) for hepatitis C virus (HCV) antibodies were the initial screening tests introduced. The ”first generation“ antibody EIAs detected seroconversion after unduly long infectious window period. Improved HCV antibody assays still had an infectious window period around 66 d. HCV core antigen EIAs shortened the window period considerably, but high costs did not lead to widespread acceptance. A fourth-generation HCV antigen and antibody assay (combination EIA) is more convenient as two infectious markers of HCV are detected in the same assay. Molecular testing for HCV-RNA utilizing nucleic acid amplification technology (NAT) is the most sensitive assay and shortens the window period to only 4 d. Implementation of NAT in many developed countries around the world has resulted in dramatic reductions in transfusion transmissible HCV and relative risk is now < 1 per million donations. However, HCV serology still continues to be retained as some donations are serology positive but NAT negative. In resource constrained countries HCV screening is highly variable, depending upon infrastructure, trained manpower and financial resource. Rapid tests which do not require instrumentation and are simple to perform are used in many small and remotely located blood centres. The sensitivity as compared to EIAs is less and wherever feasible HCV antibody EIAs are most frequently used screening assays. Efforts have been made to implement combined antigen-antibody assays and even NAT in some of these countries.
文摘BACKGROUND Rapid molecular testing has revolutionized the management of suspected viral meningitis and encephalitis by providing an etiological diagnosis in<90 min with potential to improve outcomes and shorten inpatient stays.However,use of molecular assays can vary widely.AIM To evaluate current practice for molecular testing of pediatric cerebrospinal fluid(CSF)samples across the United Kingdom using a structured questionnaire.METHODS A structured telephone questionnaire survey was conducted between July and August 2020.Data was collected on the availability of viral CSF nucleic acid amplification testing(NAAT),criteria used for testing and turnaround times including the impact of the coronavirus disease 2019 pandemic.RESULTS Of 196/212(92%)microbiology laboratories responded;63/196(32%)were excluded from final analysis as they had no on-site microbiology laboratory and outsourced their samples.Of 133 Laboratories included in the study,47/133(35%)had onsite facilities for viral CSF NAAT.Hospitals currently undertaking onsite NAAT(n=47)had much faster turnaround times with 39 centers(83%)providing results in≤24 h as compared to those referring samples to neighboring laboratories(5/86;6%).CONCLUSION Onsite/near-patient rapid NAAT(including polymerase chain reaction)is recommended wherever possible to optimize patient management in the acute setting.