AIM: To enhance the differentiation of insulin producing cell (IPC) ability from embryonic stem (ES) cells in vitro. METHODS: Four-day embryoid body (EB)-formatted ES cells were dissociated as single cells for...AIM: To enhance the differentiation of insulin producing cell (IPC) ability from embryonic stem (ES) cells in vitro. METHODS: Four-day embryoid body (EB)-formatted ES cells were dissociated as single cells for the followed plasmid DNA delivery. The use of NucleofectorTM electroporator (Amaxa biosystems, Germany) in combination with medium-contained G418 provided a high efficiency of gene delivery for advanced selection. Neucleofected cells were plated on the top of fibronectincoated Petri dishes. Addition of Ly294002 and raised the glucose in medium at 24 h before examination.The differentiation status of these cells was monitored by semi-quantitative PCR (SQ-PCR) detection of the expression of relative genes, such as oct-4, sox-17, foxa2, mixll, pdx-1, insulin 1, glucagons and somatostatin. The percentage of IPC population on d 18 of the experiment was investigated by immunohistochemistry (IHC), and the content/secretion of insulin was estimated by ELISA assay. The mice with severe combined immunodeficiency disease (SCID) pretreated with streptozotocin (STZ) were used to eliminate plasma glucose restoration after pax4^+ ES implantation. RESULTS: A high efficiency of gene delivery was demonstrated when neucleofection was used in the present study; approximately 70% cells showed DsRed expression 2 d after neucleofection. By selection of medium-contained G418, the percentage of DsRed expressing cells kept high till the end of study. The pancreatic differentiation seemed to be accelerated by pax4 nucleofection. When compared to the group of cells with mock control, foxa2, mixll, pdxl, higher insulin and somatostatin levels were detected by SQ-PCR 4 d after nucleofection in the group of pax4 expressing plasmid delivery. Approximately 55% of neucleofected cells showed insulin expression 18 d after neucleofection, and only 18% of cells showed insulin expression in mock control. The disturbance was shown by nucleofected pax4 RNAi vector; only 8% of cells expressed insulin 18 d after nucleofection. A higher IPC population was also detected in the insulin content by ELISA assay, and the glucose dependency was demonstrated in insulin secretion level. In the animal model, improvement of average plasma glucose concentration was observed in the group of pax-4 expressed ES of SCID mice pretreated with STZ, but no significant difference was observed in the group of STZ-pretreated SCID mice who were transplanted ES with mock plasmid. CONCLUSION: Enhancement of IPC differentiation from EB-dissociated ES cells can be revealed by simply using pax4 expressing plasrnid delivery. Not only more IPCs but also pancreatic differentiation-related genes can be detected by SQ-PCR. Expression of relative genes, such as foxa 2, mixl 1, pdx-1, insulin 1 and somatostatin after nucleofection, suggests that pax4 accelerates the whole differentiation progress. The higher insulin production with glucose dependent modulation suggests that pax4 expression can drive more mature IPCs. Although further determination of the entire mechanism is required, the potential of pax-4-nucleofected cells in medical treatment is promising.展开更多
OBJECTIVE To observe enhancement of anti-tumor immunity by gene vaccine using nucleofection technology METHODS The technique of nucleofection was used to transfer effectively plasmid DNA into immature dendritic cells ...OBJECTIVE To observe enhancement of anti-tumor immunity by gene vaccine using nucleofection technology METHODS The technique of nucleofection was used to transfer effectively plasmid DNA into immature dendritic cells (iDCs); we studied immune responses regulated by DNA vaccine using real-time quantitative polymerase chain reaction (PCR) and western-blotting to optimize the follow-up lymphocyte activation. The anti-tumor capacity of lymphocytes primed by DCs was analyzed using lactate dehydrogenase with a non-radioactive cytotoxicity assay.展开更多
Differentiation of human fibroblasts into functional neurons depends on the introduction of viral-mediated transcription factors, which present risks of viral gene integration and tumorigenicity. In recent years, alth...Differentiation of human fibroblasts into functional neurons depends on the introduction of viral-mediated transcription factors, which present risks of viral gene integration and tumorigenicity. In recent years, although some studies have been successful in directly inducing neurons through sustained expression of small molecule compounds, they have only been shown to be effective on mouse-derived cells. Thus, herein we delivered vectors containing Epstein-Barr virus-derived oriP/Epstein-Barr nuclear antigen 1 encoding the neuronal transcription factor, Ascl1, the neuron-specific microRNA, miR124, and a small hairpin directed against p53, into human fibroblasts. Cells were incubated in a neuron-inducing culture medium. Immunofluorescence staining was used to detect Tuj-1, microtubule-associated protein 2, neuron-specific nucleoprotein NeuN and nerve cell adhesion molecules in the induced cells. The proportion of Tuj1-positive cells was up to 36.7% after induction for 11 days. From day 21, these induced neurons showed neuron-specific expression patterns of microtubule-associated protein 2, NeuN and neural cell adhesion molecule. Our approach is a simple, plasmid-based process that enables direct reprogramming of human fibroblasts into neurons, and provides alternative avenues for disease modeling and neurodegenerative medicine.展开更多
基金grants of Stem Cell Project of TVGHthe Joint Projects of UTVGH, No. 94-P1-04/06/10+1 种基金Yen Tjing-Ling Medical FoundationNational Yang-Ming University, Taiwan, China
文摘AIM: To enhance the differentiation of insulin producing cell (IPC) ability from embryonic stem (ES) cells in vitro. METHODS: Four-day embryoid body (EB)-formatted ES cells were dissociated as single cells for the followed plasmid DNA delivery. The use of NucleofectorTM electroporator (Amaxa biosystems, Germany) in combination with medium-contained G418 provided a high efficiency of gene delivery for advanced selection. Neucleofected cells were plated on the top of fibronectincoated Petri dishes. Addition of Ly294002 and raised the glucose in medium at 24 h before examination.The differentiation status of these cells was monitored by semi-quantitative PCR (SQ-PCR) detection of the expression of relative genes, such as oct-4, sox-17, foxa2, mixll, pdx-1, insulin 1, glucagons and somatostatin. The percentage of IPC population on d 18 of the experiment was investigated by immunohistochemistry (IHC), and the content/secretion of insulin was estimated by ELISA assay. The mice with severe combined immunodeficiency disease (SCID) pretreated with streptozotocin (STZ) were used to eliminate plasma glucose restoration after pax4^+ ES implantation. RESULTS: A high efficiency of gene delivery was demonstrated when neucleofection was used in the present study; approximately 70% cells showed DsRed expression 2 d after neucleofection. By selection of medium-contained G418, the percentage of DsRed expressing cells kept high till the end of study. The pancreatic differentiation seemed to be accelerated by pax4 nucleofection. When compared to the group of cells with mock control, foxa2, mixll, pdxl, higher insulin and somatostatin levels were detected by SQ-PCR 4 d after nucleofection in the group of pax4 expressing plasmid delivery. Approximately 55% of neucleofected cells showed insulin expression 18 d after neucleofection, and only 18% of cells showed insulin expression in mock control. The disturbance was shown by nucleofected pax4 RNAi vector; only 8% of cells expressed insulin 18 d after nucleofection. A higher IPC population was also detected in the insulin content by ELISA assay, and the glucose dependency was demonstrated in insulin secretion level. In the animal model, improvement of average plasma glucose concentration was observed in the group of pax-4 expressed ES of SCID mice pretreated with STZ, but no significant difference was observed in the group of STZ-pretreated SCID mice who were transplanted ES with mock plasmid. CONCLUSION: Enhancement of IPC differentiation from EB-dissociated ES cells can be revealed by simply using pax4 expressing plasrnid delivery. Not only more IPCs but also pancreatic differentiation-related genes can be detected by SQ-PCR. Expression of relative genes, such as foxa 2, mixl 1, pdx-1, insulin 1 and somatostatin after nucleofection, suggests that pax4 accelerates the whole differentiation progress. The higher insulin production with glucose dependent modulation suggests that pax4 expression can drive more mature IPCs. Although further determination of the entire mechanism is required, the potential of pax-4-nucleofected cells in medical treatment is promising.
文摘OBJECTIVE To observe enhancement of anti-tumor immunity by gene vaccine using nucleofection technology METHODS The technique of nucleofection was used to transfer effectively plasmid DNA into immature dendritic cells (iDCs); we studied immune responses regulated by DNA vaccine using real-time quantitative polymerase chain reaction (PCR) and western-blotting to optimize the follow-up lymphocyte activation. The anti-tumor capacity of lymphocytes primed by DCs was analyzed using lactate dehydrogenase with a non-radioactive cytotoxicity assay.
基金supported by the National Natural Science Foundation of China,No.81471126(to XZC)and 81771216(to XZC)the Natural Science Foundation of Zhejiang Province of China,No.LY17H090005(to JLP)a grant from the Medical Science and Technology Plan Project of Zhejiang Province of China,No.2016KYB119(to JLP)
文摘Differentiation of human fibroblasts into functional neurons depends on the introduction of viral-mediated transcription factors, which present risks of viral gene integration and tumorigenicity. In recent years, although some studies have been successful in directly inducing neurons through sustained expression of small molecule compounds, they have only been shown to be effective on mouse-derived cells. Thus, herein we delivered vectors containing Epstein-Barr virus-derived oriP/Epstein-Barr nuclear antigen 1 encoding the neuronal transcription factor, Ascl1, the neuron-specific microRNA, miR124, and a small hairpin directed against p53, into human fibroblasts. Cells were incubated in a neuron-inducing culture medium. Immunofluorescence staining was used to detect Tuj-1, microtubule-associated protein 2, neuron-specific nucleoprotein NeuN and nerve cell adhesion molecules in the induced cells. The proportion of Tuj1-positive cells was up to 36.7% after induction for 11 days. From day 21, these induced neurons showed neuron-specific expression patterns of microtubule-associated protein 2, NeuN and neural cell adhesion molecule. Our approach is a simple, plasmid-based process that enables direct reprogramming of human fibroblasts into neurons, and provides alternative avenues for disease modeling and neurodegenerative medicine.