Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diab...Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research.Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy,it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods.This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods.Various metabolic mechanisms(e.g.,polyol,hexosamine,protein kinase C pathway)are associated with diabetic peripheral neuropathy,and researchers are looking for more effective treatments through these pathways.展开更多
Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,memb...Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,member 5A(Wnt5a)and an anti-inflammatory adipocytokine.In this study,we aimed to investigate whether MC-LR can induce lipid metabolism disorders in hepatocytes and whether SFRP5,which has anti-inflammatory effects,can alleviate the effects of hepatic lipid metabolism by inhibiting the Wnt5a/Jun N-terminal kinase(JNK)pathway.Methods We exposed mice to MC-LR in vivo to induce liver lipid metabolism disorders.Subsequently,mouse hepatocytes that overexpressed SFRP5 or did not express SFRP5 were exposed to MC-LR,and the effects of SFRP5 overexpression on inflammation and Wnt5a/JNK activation by MC-LR were observed.Results MC-LR exposure induced liver lipid metabolism disorders in mice and significantly decreased SFRP5 mRNA and protein levels in a concentration-dependent manner.SFRP5 overexpression in AML12cells suppressed MC-LR-induced inflammation.Overexpression of SFRP5 also inhibited Wnt5a and phosphorylation of JNK.Conclusion MC-LR can induce lipid metabolism disorders in mice,and SFRP5 can attenuate lipid metabolism disorders in the mouse liver by inhibiting Wnt5a/JNK signaling.展开更多
Background:Metabolic stress has been proposed to contribute to neuronal damage in glaucoma,but the mechanism driving this response is not understood.The adenosine monophosphate-activated protein kinase(AMPK)is a maste...Background:Metabolic stress has been proposed to contribute to neuronal damage in glaucoma,but the mechanism driving this response is not understood.The adenosine monophosphate-activated protein kinase(AMPK)is a master regulator of energy homeostasis that becomes active at the onset of energy stress.AMPK is a potent inhibitor of the mammalian target of rapamycin complex 1(mTORC1),which we showed is essential for the maintenance of retinal ganglion cell(RGC)dendrites,synapses,and survival.Here,we tested the hypothesis that AMPK is an early mediator of metabolic stress in glaucoma.Methods:Unilateral elevation of intraocular pressure was induced by injection of magnetic microbeads into the anterior chamber of mice expressing yellow fluorescent protein in RGCs.Inhibition of AMPK was achieved by administration of siRNA or compound C.RGC dendritic trees were 3D-reconstructed and analyzed with Imaris(Bitplane),and survival was assessed by counting Brn3a or RBPMS-labeled soma and axons in the optic nerve.RGC function was examined by quantification of anterograde axonal transport after intraocular administration of cholera toxinβ-subunit.Retinas from glaucoma patients were analyzed for expression of active AMPK.Results:Ocular hypertension triggered rapid upregulation of AMPK activity in RGCs concomitant with loss of mTORC1 function.AMPK inhibition with compound C or siRNA effectively restored mTORC1 activity and promoted an increase in total dendritic length,surface and complexity relative to control retinas.Attenuation of AMPK activity led to robust RGC soma and axon survival.For example,95%of RGCs(2,983±258 RGCs/mm2,mean±S.E.M.)survived with compound C compared to 77%in vehicle-treated eyes(2,430±233 RGCs/mm2)(ANOVA,P<0.001)at three weeks after glaucoma induction(n=8-10/group).Importantly,blockade of AMPK activity effectively restored anterograde axonal transport.Lastly,RGC-specific upregulation of AMPK activity was detected in human glaucomatous retinas relative to age-matched controls(n=10/group).Conclusions:Metabolic stress in glaucoma involves AMPK activation and mTORC1 inhibition promoting early RGC dendritic pathology,dysfunction and neurodegeneration.展开更多
Pyridoxal kinase (PLK) (EC 2.7.1.35) catalyzes the ATP-dependent phosphorylation of pyridoxal, generating pyridoxal-5'-phosphate (PLP), an important cofactor for many enzymatic reactions. Bombyx mori, similar t...Pyridoxal kinase (PLK) (EC 2.7.1.35) catalyzes the ATP-dependent phosphorylation of pyridoxal, generating pyridoxal-5'-phosphate (PLP), an important cofactor for many enzymatic reactions. Bombyx mori, similar to mammals, relies on a nutritional source of vitamin B6 to synthesize PLP. This article describes how a cDNA encoding PLK was cloned from Bombyx mori using the PCR method (GenBank accession number: DQ452397). The cDNA has an 894 bp open reading frame and encodes a protein of 298 amino acid residues with a molecular mass of 33.1 k.Da. The amino acid sequence shares 48.6% identity with that of human PLK, and it also contains signature conserved motifs of the PLK family. However, the protein is 10 or more amino acids shorter than the PLK from mammals and plants, and several amino acid residues conserved in the PLK from mammals and plants are changed in the protein. The cDNA cloned was expressed successfully in Escherichia coli using the T7 promoter/T7 RNA polymerase expression system, and the crude extracts containing the expressed product were found to have strong PLK enzymatic activity with a value of 30 nmol/min/mg, confirming that the cDNA encodes the functional PLK of Bombyx mori. This is the first identification of a gene encoding PLK in insects.展开更多
The adenosine monophosphate-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 pathway may serve as a key signaling flow that regulates energy metabolism; thus, this pathway becomes an attractive target for...The adenosine monophosphate-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 pathway may serve as a key signaling flow that regulates energy metabolism; thus, this pathway becomes an attractive target for the treatment of liver diseases that result from metabolic derangements. In addition, AMPK emerges as a kinase that controls the redox-state and mitochondrial function, whose activity may be modulated by antioxidants. A close link exists between fuel metabolism and mitochondrial biogenesis. The relationship between fuel metabolism and cell survival strongly implies the existence of a shared signaling network, by which hepatocytes respond to challenges of external stimuli. The AMPK pathway may belong to this network. A series of drugs and therapeutic candidates enable hepatocytes to protect mitochondria from radical stress and increase cell viability, which may be associated with the activation of AMPK, liver kinase B1, and other molecules or components. Consequently, the components downstream of AMPK may contribute to stabilizing mitochondrial membrane potential for hepatocyte survival. In this review, we discuss the role of the AMPK pathway in hepatic energy metabolism and hepatocyte viability. This information may help identify ways to prevent and/or treat hepatic diseases caused by the metabolic syndrome. Moreover, clinical drugs and experimental therapeutic candidates that directly or indirectly modulate the AMPK pathway in distinct manners are discussed here with particular emphasis on their effects on fuel metabolism and mitochondrial function.展开更多
Gastrointestinal(GI) cancer is one of the most common causes of cancer-related deaths worldwide.Tumor markers are valuable in detecting post-surgical recurrence or in monitoring response to chemotherapy.Pyruvate kinas...Gastrointestinal(GI) cancer is one of the most common causes of cancer-related deaths worldwide.Tumor markers are valuable in detecting post-surgical recurrence or in monitoring response to chemotherapy.Pyruvate kinase isoform M2(PKM2),a glycolytic enzyme catalyzing conversion of phosphoenolpyruvate(PEP) to pyruvate,confers a growth advantage to the tumor cells and enables them to adapt to the tumor microenvironment.In this review,we have summarized current research on the expression and regulation of PKM2 in tumor cells,and its potential role in GI carcinogenesis and progression.Furthermore,we have also discussed the potential of PKM2 as a diagnostic and screening marker,and a therapeutic target in GI cancer.展开更多
AIM: To examine the role of p38 during acute experimental cerulein pancreatitis. METHODS: Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347) and/or a specific p38 inhibitor (SB203580) a...AIM: To examine the role of p38 during acute experimental cerulein pancreatitis. METHODS: Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347) and/or a specific p38 inhibitor (SB203580) and pancreatic stress kinase activity was determined. Parameters to assess pancreatitis included trypsin, amylase, lipase, pancreatic weight and histology. RESULTS: JNK inhibition with CEP1347 ameliorated pancreatitis, reducing pancreatic edema. In contrast, p38 inhibition with SB203580 aggravated pancreatitis with higher trypsin levels and, with induction of acinar necrosis not normally found after cerulein hyperstimulation. Simultaneous treatment with both CEP1347 and SB203580 mutually abolished the effects of either compound on cerulein pancreatitis. CONCLUSION: Stress kinases modulate pancreatitis differentially. JNK seems to promote pancreatitis development, possibly by supporting inflammatory reactions such as edema formation while its inhibition ameliorates pancreatitis. In contrast, p38 may help reduce organ destruction while inhibition of p38 during induction of cerulein pancreatitis leads to the occurrence of acinar necrosis.展开更多
Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for develo...Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for developing cardiovascular disease.Metabolic syndrome is associated with augmented sympathetic tone,which could account for the etiology of pre-diabetic cardiomyopathy.This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustainedβ-adrenergic response in pre-diabetes,focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy.The research reviewed indicates that both protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ play important roles in functional responses mediated byβ1-adrenoceptors;therefore,alterations in the expression or function of these kinases can be deleterious.This review also outlines recent information on the role of protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ in abnormal Ca^(2+)handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.展开更多
To understand the function of phosphoenolpyruvate carboxylase kinase,we introduced PtPEPCK1 gene under the control of 35S promoter into 84K poplar(Populus alba×P.glandulosa).PtPEPCK1 gene is well-known for its ro...To understand the function of phosphoenolpyruvate carboxylase kinase,we introduced PtPEPCK1 gene under the control of 35S promoter into 84K poplar(Populus alba×P.glandulosa).PtPEPCK1 gene is well-known for its role in gluconeogenesis.However,our data confi rmed that it has signifi cant eff ects on amino acid biosynthesis and nitrogen metabolism.Immunohistochemistry and fl uorescence microscopy indicate that PtPEPCK1 is specifi cally expressed in the cytoplasm of the spongy and palisade tissues.Overexpression of PtPEPCK1 was characterized through transcriptomics and metabolomics.The metabolites concentration of the ornithine cycle and its precursors also increased,of which N-acetylornithine was up-regulated almost 50-fold and ornithine 33.7-fold.These were accompanied by a massive increase in levels of several amino acids.Therefore,overexpression of PtPEPCK1 increases amino acid levels with urea cycle disorder.展开更多
OBJECTIVE To investigate berberine(BBR)attenuates arthritis in adjuvant-induced arthritic(AA)rats associated with regulating the energy metabolism and correcting the polarization of macrophages through activation of A...OBJECTIVE To investigate berberine(BBR)attenuates arthritis in adjuvant-induced arthritic(AA)rats associated with regulating the energy metabolism and correcting the polarization of macrophages through activation of AMP-activated protein kinase(AMPK)and inhibition of hypoxia inducible factor 1α(HIF-1α).METHODS AA rats were treated with BBR(40,80,or 160 mg·kg-1)from days 15 to 29 after immunization.The histopathology of ankle joint was examined through hematoxylin-eosin(HE)staining.The concentrations of tumour necrosis factor-α(TNF-α),interleukin-6(IL-6),IL-1β,IL-2,IL-17A,interferon-gamma(IFN-γ),monocyte chemotactic protein 1(MCP-1),IL-4,IL-10,transforming growth factor-β1(TGF-β1),ATP,and lactic acid were measured by using ELISA kits.The percentage of M1 and M2 macro⁃phage cells in joint tissues were evaluated by immune-fluorescence.The expressions of p-AMPK and HIF-1αin joint of AA rats were determined according to immunohistochemistry analysis.The migration of macrophage was detected by Transwell assays.The expression of inducible nitric oxide synthase(iNOS),Arginase-1(Arg1),p-AMPK,AMPK and HIF-1αwere examined by Western blotting.The labeled macrophages were observed with laser confocal microscopy.RESULTS BBR relieved signs and symptoms of AA rats and reversed pathological changes.BBR treatment group exhibited decreases in pro-inflammatory cytokines(TNF-α,IL-1β,IL-6,IL-2,IL-17A,IFN-γ,and MCP-1)coupled with increases anti-inflammatory cytokines(IL-4,IL-10,TGF-β1)in the serum.The number of M1 macrophage was reduced,while the number of M2 macrophage was increased in BBR group joint tissues.Moreover,BBR showed marked up-regu⁃lation the expression of p-AMPK and down-regulation the expression of HIF-1αin joint of AA rats.Next in vitro study,we found BBR up-regulated the expression of p-AMPK,Arg1(M2 marker)and down-regulated the expression of HIF-1α,iNOS(M1 marker)induced by LPS in peritoneal macrophages from normal SD rat.Furthermore,BBR treatment inhibited the migration of macrophages stimulated by LPS.The level of ATP was elevated and lactic acid was reduced in LPSinduced macrophages after treated by BBR.However,Compound C significantly attenuated the effects of BBR on acti⁃vated macrophages.CONCLUSION BBR alleviates inflammation by regulating energy metabolism and correcting the polarization of macrophage through AMPK-HIF-1αpathway.BBR might have great therapeutic value for RA.展开更多
Obesity is crucially involved in many metabolic diseases,such as type 2 diabetes,cardiovascular disease and cancer.Regulating the number or size of adipocytes has been suggested to be a potential treatment for obesity...Obesity is crucially involved in many metabolic diseases,such as type 2 diabetes,cardiovascular disease and cancer.Regulating the number or size of adipocytes has been suggested to be a potential treatment for obesity.In this study,we investigated the effect of pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside(PAQG),a 27-nor-oleanolic acid saponin extracted from Metadina trichotoma,on adipogenesis and lipid metabolism in 3T3-L1 adipocytes.The 3T3-L1 pre-adipocytes were incubated with vehicle or PAQG for 6 days in differentiation process.PAQG significantly reduced the adipogenesis,adiponectin secretion and the expression level of key transcription factors related to adipogenesis,such as PPARc,C/EBPb,C/EBPa,and FABP4.Moreover,PAQG increased the levels of FFA and glycerol in medium and reduced TG level in mature adipocytes.Interestingly,PAQG not only promoted the activation of AMPK and genes involved in fatty oxidation including PDK4 and CPT1a,but also inhibited those genes involved in fatty acid biosynthesis,such as SREBP1c,FAS,ACCa and SCD1.In conclusion,PAQG inhibits the differentiation and regulates lipid metabolism of 3T3-L1 cells via AMPK pathway,suggesting that PAQG may be a novel and promising natural product for the treatment of obesity and hyperlipidemia.展开更多
Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However...Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However, the integrated profile of energy metabolism, especially the central carbohydrate metabolism, remains unclear in DPN. Here, we developed a metabolomics approach by targeting 56 metabolites using high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) to illustrate the integrative characteristics of central carbohydrate metabolism in patients with DPN and streptozotocin-induced DPN rats. Furthermore, JinMaiTong (JMT), a traditional Chinese medicine (TCM) formula, was found to be effective for DPN, improving the peripheral neurological function and alleviating the neuropathology of DPN rats even after demyelination and axonal degeneration. JMT ameliorated DPN by regulating the aberrant energy balance and mitochondrial functions, including excessive glycolysis restoration, tricarboxylic acid cycle improvement, and increased adenosine triphosphate (ATP) generation. Bioenergetic profile was aberrant in cultured rat Schwann cells under high-glucose conditions, which was remarkably corrected by JMT treatment. In-vivo and in-vitro studies revealed that these effects of JMT were mainly attributed to the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and downstream peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our results expand the therapeutic framework for DPN and suggest the integrative modulation of energy metabolism using TCMs, such as JMT, as an effective strategy for its treatment.展开更多
The prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has increased significantly in recent decades and is projected to increase further due to the rising obesity rates.MASLD patients are at...The prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has increased significantly in recent decades and is projected to increase further due to the rising obesity rates.MASLD patients are at higher risk of developing advanced liver diseases“cirrhosis and hepatocellular carcinoma”as well as liver-or cardiovascular-related mortality.Existing lipid-lowering therapies failed to reduce the risk of mortality in these patients.Therefore,there is an urgent need for pharmacotherapies that can control and even reverse this disease.Fanlian Huazhuo Formula(FLHZF)is a combination herbal preparation,and its various individual constituents regulate hepatic lipid metabolism,adipose tissue inflammation,and gut microbiota.Despite,these useful effects,limited information is available on its benefits in diet-induced hepatosteatosis.In this article,we discuss the research findings recently published about the therapeutic effects of FLHZF in suppressing MASLD development and underlying mechanisms.Utilizing a series of in vitro and in vivo experiments,the authors demonstrated for the first time that FLHZF suppresses MASLD in male mice possibly by inhibiting hepatic de novo lipogenesis pathways and reducing hepatocyte death.This study paves the way for future investigations aimed at investigating FLHZF’s role in inhibiting lipogenesis particularly using radioactively-labeled glucose and acetate,and governing hepatocyte mitochondrial function,gut microbiome profile,and its effects in other models of MASLD,and female mice.展开更多
Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can partic...Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter Y-aminobutyric acid, and changes in the intra- and extracellular environment.展开更多
背景:巨噬细胞的能量代谢和极化状态在动脉粥样硬化的进展中起关键作用。中医药通过调控巨噬细胞代谢途径展示出防治动脉粥样硬化的潜力。目的:综述腺苷酸活化蛋白激酶调控巨噬细胞能量代谢和极化状态的研究进展,并探讨中医药防治动脉...背景:巨噬细胞的能量代谢和极化状态在动脉粥样硬化的进展中起关键作用。中医药通过调控巨噬细胞代谢途径展示出防治动脉粥样硬化的潜力。目的:综述腺苷酸活化蛋白激酶调控巨噬细胞能量代谢和极化状态的研究进展,并探讨中医药防治动脉粥样硬化的作用机制。方法:计算机检索Web of Science、PubMed及中国知网等数据库,检索时限为各数据库建库至2024年6月。中文检索词为“AMPK,脂肪酸氧化,巨噬细胞极化,中药,动脉粥样硬化,冠心病”等;英文检索词为“AMPK,fatty acid oxidation,macrophage polarization,Traditional Chinese Medicine,atherosclerosis,coronary heart disease”等,最终纳入62篇文献。结果与结论:①巨噬细胞的能量代谢从氧化磷酸化向糖酵解的转变,在动脉粥样硬化进展中起关键作用。在巨噬细胞中腺苷酸活化蛋白激酶激活后,通过促进脂肪酸氧化和M2型极化,发挥抗炎和稳定动脉斑块的作用。②中药单药(如人参、黄芪、黄精等)及复方(如黄连解毒汤、养心舒脉颗粒、调肝导浊方等)通过调控腺苷酸活化蛋白激酶途径干预核因子κB、过氧化物酶体增殖物激活受体γ、哺乳动物雷帕霉素靶蛋白等多条信号通路影响巨噬细胞的代谢方式,改变细胞功能,从而发挥治疗疾病的作用。③未来的研究应关注腺苷酸活化蛋白激酶、代谢与极化途径的相互作用,以及中药如何通过这些途径发挥治疗作用,为动脉粥样硬化的治疗提供新的策略。展开更多
Background:Intrahepatic cholangiocarcinoma(iCCA)is a highly heteroge-neous and lethal hepatobiliary tumor with few therapeutic strategies.The metabolic reprogramming of tumor cells plays an essential role in the devel...Background:Intrahepatic cholangiocarcinoma(iCCA)is a highly heteroge-neous and lethal hepatobiliary tumor with few therapeutic strategies.The metabolic reprogramming of tumor cells plays an essential role in the develop-ment of tumors,while the metabolic molecular classification of iCCA is largely unknown.Here,we performed an integrated multiomics analysis and metabolic classification to depict differences in metabolic characteristics of iCCA patients,hoping to provide a novel perspective to understand and treat iCCA.Methods:We performed integrated multiomics analysis in 116 iCCA samples,including whole-exome sequencing,bulk RNA-sequencing and proteome anal-ysis.Based on the non-negative matrix factorization method and the protein abundance of metabolic genes in human genome-scale metabolic models,the metabolic subtype of iCCA was determined.Survival and prognostic gene analy-ses were used to compare overall survival(OS)differences between metabolic subtypes.Cell proliferation analysis,5-ethynyl-2’-deoxyuridine(EdU)assay,colony formation assay,RNA-sequencing and Western blotting were performed to investigate the molecular mechanisms of diacylglycerol kinaseα(DGKA)in iCCA cells.Results:Three metabolic subtypes(S1-S3)with subtype-specific biomarkers of iCCA were identified.These metabolic subtypes presented with distinct prog-noses,metabolic features,immune microenvironments,and genetic alterations.The S2 subtype with the worst survival showed the activation of some special metabolic processes,immune-suppressed microenvironment and Kirsten ratsar-coma viral oncogene homolog(KRAS)/AT-rich interactive domain 1A(ARID1A)mutations.Among the S2 subtype-specific upregulated proteins,DGKA was further identified as a potential drug target for iCCA,which promoted cell proliferation by enhancing phosphatidic acid(PA)metabolism and activating mitogen-activated protein kinase(MAPK)signaling.Conclusion:Viamultiomics analyses,we identified three metabolic subtypes of iCCA,revealing that the S2 subtype exhibited the poorest survival outcomes.We further identified DGKA as a potential target for the S2 subtype.展开更多
Berberine(BBR) is a natural alkaloid isolated from the Coptis Chinensis.While this plant has been used in Ay-urvedic and Chinese medicine for more than 2500 years,interest in its effects in metabolic and cardiovascula...Berberine(BBR) is a natural alkaloid isolated from the Coptis Chinensis.While this plant has been used in Ay-urvedic and Chinese medicine for more than 2500 years,interest in its effects in metabolic and cardiovascular disease has been growing in the Western world in the last decade.Many papers have been published in these years reporting beneficial effects in carbohydrate and lip-id metabolism,endothelial function and the cardiovascu-lar system.In this review,we report a detailed analysis of the scientific literature regarding this topic,describing the effects and the underlying mechanisms of BBR on carbohydrate and lipid metabolism,endothelial function and the cardiovascular system.展开更多
OBJECTIVE: To investigate the effect of Yiqihuoxue prescription(YQHX) from Traditional Chinese Medicine(TCM) on myocardial glucose and lipid metabolism after myocardial infarction via the cross talk between the liver ...OBJECTIVE: To investigate the effect of Yiqihuoxue prescription(YQHX) from Traditional Chinese Medicine(TCM) on myocardial glucose and lipid metabolism after myocardial infarction via the cross talk between the liver kinase B1(LKB1)-dependent Notch1 and adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK). YQHX was prepared with substances with properties that benefit, to activate blood circulation based on the TCM theory.METHODS: Animal models of myocardial infarction were established by ligating Sprague Dawley rats' left anterior descending coronary arteries. The animals were randomly divided into a myocardial infarction(MI) group, a YQHX group, a perindopril group, a γ-secretase inhibitor, Notch signal inhibitor(DAPT) group, a DAPT+YQHX group and a sham group. The related drugs were administered on the second day after operation, and changes in the relevant indexes were examined on weeks 1 and 4.Changes in cardiac structure and function were examined by echocardiography. The glucose and free fatty acids(FFA) were examined by ELISA. The expression of Notch, LKB1 and AMPK m RNA was examined by a real-time fluorescence quantitative method. The expression of glucose transporter 4(GLUT4), and the expression of total acetyl-Co A carboxylase(ACC) and its phosphorylation were examined by western blotting.RESULTS: Compared with the sham group, the expression of Notch, LKB1 and AMPK m RNA in the MI group was lower. Compared with the MI group, the expression of these m RNAs in the YQHX and perindopril groups was higher, and their expression in the DAPT group was lower. At all time points, the protein expression of GLUT4 and p ACC decreased in the MI group. On week 1, the expression of p ACC protein was higher. In the DAPT group, the expression of p ACC protein decreased. Compared with the YQHX group, the expression of p ACC protein in the DAPT + YQHX group was lower. On week 4,compared with the MI group, the expression of GLUT4 protein in the YQHX group and the perindo-pril group was higher. The expression of GLUT4 protein in the DAPT group decreased. Compared with the YQHX group, the expression of GLUT4 protein in the DAPT+YQHX group was lower. There was no significant difference in the expression of ACC protein between the groups.CONCLUSION: YQHX promoted cross talk between the LKB1-dependent Notch1 and AMPK in myocardial tissue after myocardial infarction. Furthermore,it regulated the glucose and lipid metabolism of cardiomyocytes at different time points, thereby ameliorating the cardiac energy metabolism via different mechanisms and protecting the heart.展开更多
Objective:To investigate the therapeutic effect of Sanhuang Xiexin Decoction(SXD)on triplenegative breast cancer(TNBC)in mice and its underlying mechanism.Methods:The high-performance liquid chromatography(HHLC)was us...Objective:To investigate the therapeutic effect of Sanhuang Xiexin Decoction(SXD)on triplenegative breast cancer(TNBC)in mice and its underlying mechanism.Methods:The high-performance liquid chromatography(HHLC)was used to quantitate and qualify SXD.A total of 15 female BALB/c mice were inoculated subcutaneously on the right hypogastrium with 3×10^(5) of 4T1-Luc cells to establish TNBC mouse model.All mice were divided randomly into 3 groups,including phosphate buffered solution(PBS),SXD and doxorubicin(DOX)groups(positive drug).Additionally,tumor growth,pathological changes,serum lipid profiles,expression of Janus kinase 2(JAK2)-signal transducer and activator of transcription 3(STAT3)signaling pathway and its key targets including inflammatory factors,cell cycle and epithelial-mesenchymal transition(EMT)markers were investigated.Besides,the biosafety of SXD was also evaluated in mice.Results:Rhein,coptisine,berberine hydrochloride and baicalin were all found in SXD,and the concentrations of these 4 components were 0.57,2.61,2.93,and 46.04 mg/g3respectively.The mouse experiment showed that SXD could notably suppress the development of tumors and reduce the density of tumor cells(P<0.01).The serum lipid analysis and Oil-Red-O staining both showed the differences,SXD group exhibited higher serum adiponectin and HDL-C levels with lower TC and LDL-C levels compared to the PBS and DOX groups(P<0.05 or P<0.01),respectively.SXD also decreased the levels of phospho-JAK2(p-JAK2),phospho-STAT3(p-STAT3)expressions and its downstream factors,including mostly inflammatory cytokine,EMT markers,S phase of tumor cells and vascular endothelial growth factor(VEGF)expression(P<.05 or P<0.01),respectively.The biosafety assessment of SXD revealed low levels of toxicity in mice.Conclusion:SXD could inhibit TNBC by suppressing JAK2-STAT3 phosphorylation which may be associated with modulation of lipid metabolism.展开更多
基金supported by the Projects of the National Key R&D Program of China,Nos.2021YFC2400803(to YO),2021YFC2400801(to YQ)the National Natural Science Foundation of China,Nos.82002290(to YQ),82072452(to YO),82272475(to YO)+5 种基金the Young Elite Scientist Sponsorship Program by Cast,No.YESS20200153(to YQ)the Sino-German Mobility Programme,No.M-0699(to YQ)the Excellent Youth Cultivation Program of Shanghai Sixth People’s Hospital,No.ynyq202201(to YQ)the Shanghai Sailing Program,No.20YF1436000(to YQ)the Medical Engineering Co-Project of University of Shanghai for Science and Technology,10-22-310-520(to YO)a grant from Shanghai Municipal Health Commission,No.202040399(to YO).
文摘Diabetic peripheral neuropathy is a common complication of diabetes mellitus.Elucidating the pathophysiological metabolic mechanism impels the generation of ideal therapies.However,existing limited treatments for diabetic peripheral neuropathy expose the urgent need for cell metabolism research.Given the lack of comprehensive understanding of energy metabolism changes and related signaling pathways in diabetic peripheral neuropathy,it is essential to explore energy changes and metabolic changes in diabetic peripheral neuropathy to develop suitable treatment methods.This review summarizes the pathophysiological mechanism of diabetic peripheral neuropathy from the perspective of cellular metabolism and the specific interventions for different metabolic pathways to develop effective treatment methods.Various metabolic mechanisms(e.g.,polyol,hexosamine,protein kinase C pathway)are associated with diabetic peripheral neuropathy,and researchers are looking for more effective treatments through these pathways.
基金supported by the Natural Science Research Project of colleges and Universities in Anhui Province[2022AH052336]High Level Talent Research Initiation Fund Of Anhui Medical College[2023RC004]。
文摘Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,member 5A(Wnt5a)and an anti-inflammatory adipocytokine.In this study,we aimed to investigate whether MC-LR can induce lipid metabolism disorders in hepatocytes and whether SFRP5,which has anti-inflammatory effects,can alleviate the effects of hepatic lipid metabolism by inhibiting the Wnt5a/Jun N-terminal kinase(JNK)pathway.Methods We exposed mice to MC-LR in vivo to induce liver lipid metabolism disorders.Subsequently,mouse hepatocytes that overexpressed SFRP5 or did not express SFRP5 were exposed to MC-LR,and the effects of SFRP5 overexpression on inflammation and Wnt5a/JNK activation by MC-LR were observed.Results MC-LR exposure induced liver lipid metabolism disorders in mice and significantly decreased SFRP5 mRNA and protein levels in a concentration-dependent manner.SFRP5 overexpression in AML12cells suppressed MC-LR-induced inflammation.Overexpression of SFRP5 also inhibited Wnt5a and phosphorylation of JNK.Conclusion MC-LR can induce lipid metabolism disorders in mice,and SFRP5 can attenuate lipid metabolism disorders in the mouse liver by inhibiting Wnt5a/JNK signaling.
文摘Background:Metabolic stress has been proposed to contribute to neuronal damage in glaucoma,but the mechanism driving this response is not understood.The adenosine monophosphate-activated protein kinase(AMPK)is a master regulator of energy homeostasis that becomes active at the onset of energy stress.AMPK is a potent inhibitor of the mammalian target of rapamycin complex 1(mTORC1),which we showed is essential for the maintenance of retinal ganglion cell(RGC)dendrites,synapses,and survival.Here,we tested the hypothesis that AMPK is an early mediator of metabolic stress in glaucoma.Methods:Unilateral elevation of intraocular pressure was induced by injection of magnetic microbeads into the anterior chamber of mice expressing yellow fluorescent protein in RGCs.Inhibition of AMPK was achieved by administration of siRNA or compound C.RGC dendritic trees were 3D-reconstructed and analyzed with Imaris(Bitplane),and survival was assessed by counting Brn3a or RBPMS-labeled soma and axons in the optic nerve.RGC function was examined by quantification of anterograde axonal transport after intraocular administration of cholera toxinβ-subunit.Retinas from glaucoma patients were analyzed for expression of active AMPK.Results:Ocular hypertension triggered rapid upregulation of AMPK activity in RGCs concomitant with loss of mTORC1 function.AMPK inhibition with compound C or siRNA effectively restored mTORC1 activity and promoted an increase in total dendritic length,surface and complexity relative to control retinas.Attenuation of AMPK activity led to robust RGC soma and axon survival.For example,95%of RGCs(2,983±258 RGCs/mm2,mean±S.E.M.)survived with compound C compared to 77%in vehicle-treated eyes(2,430±233 RGCs/mm2)(ANOVA,P<0.001)at three weeks after glaucoma induction(n=8-10/group).Importantly,blockade of AMPK activity effectively restored anterograde axonal transport.Lastly,RGC-specific upregulation of AMPK activity was detected in human glaucomatous retinas relative to age-matched controls(n=10/group).Conclusions:Metabolic stress in glaucoma involves AMPK activation and mTORC1 inhibition promoting early RGC dendritic pathology,dysfunction and neurodegeneration.
基金This work was supported by the Foundation of Talented Person Development of Anhui Province in 2004.
文摘Pyridoxal kinase (PLK) (EC 2.7.1.35) catalyzes the ATP-dependent phosphorylation of pyridoxal, generating pyridoxal-5'-phosphate (PLP), an important cofactor for many enzymatic reactions. Bombyx mori, similar to mammals, relies on a nutritional source of vitamin B6 to synthesize PLP. This article describes how a cDNA encoding PLK was cloned from Bombyx mori using the PCR method (GenBank accession number: DQ452397). The cDNA has an 894 bp open reading frame and encodes a protein of 298 amino acid residues with a molecular mass of 33.1 k.Da. The amino acid sequence shares 48.6% identity with that of human PLK, and it also contains signature conserved motifs of the PLK family. However, the protein is 10 or more amino acids shorter than the PLK from mammals and plants, and several amino acid residues conserved in the PLK from mammals and plants are changed in the protein. The cDNA cloned was expressed successfully in Escherichia coli using the T7 promoter/T7 RNA polymerase expression system, and the crude extracts containing the expressed product were found to have strong PLK enzymatic activity with a value of 30 nmol/min/mg, confirming that the cDNA encodes the functional PLK of Bombyx mori. This is the first identification of a gene encoding PLK in insects.
基金Supported by The National Research Foundation of Korea Grant,Funded by the Korea Government(MEST),No.2010-0001706,South Korea
文摘The adenosine monophosphate-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 pathway may serve as a key signaling flow that regulates energy metabolism; thus, this pathway becomes an attractive target for the treatment of liver diseases that result from metabolic derangements. In addition, AMPK emerges as a kinase that controls the redox-state and mitochondrial function, whose activity may be modulated by antioxidants. A close link exists between fuel metabolism and mitochondrial biogenesis. The relationship between fuel metabolism and cell survival strongly implies the existence of a shared signaling network, by which hepatocytes respond to challenges of external stimuli. The AMPK pathway may belong to this network. A series of drugs and therapeutic candidates enable hepatocytes to protect mitochondria from radical stress and increase cell viability, which may be associated with the activation of AMPK, liver kinase B1, and other molecules or components. Consequently, the components downstream of AMPK may contribute to stabilizing mitochondrial membrane potential for hepatocyte survival. In this review, we discuss the role of the AMPK pathway in hepatic energy metabolism and hepatocyte viability. This information may help identify ways to prevent and/or treat hepatic diseases caused by the metabolic syndrome. Moreover, clinical drugs and experimental therapeutic candidates that directly or indirectly modulate the AMPK pathway in distinct manners are discussed here with particular emphasis on their effects on fuel metabolism and mitochondrial function.
基金supported by the grants from ‘San Ming’ Project of Shenzhen city,China(No.SZSM201612051)Municipal Health Planning Commission Fund of Shenzhen city,China(No.201601004,No.SZXJ2017078 and No.SXZJ2018084)
文摘Gastrointestinal(GI) cancer is one of the most common causes of cancer-related deaths worldwide.Tumor markers are valuable in detecting post-surgical recurrence or in monitoring response to chemotherapy.Pyruvate kinase isoform M2(PKM2),a glycolytic enzyme catalyzing conversion of phosphoenolpyruvate(PEP) to pyruvate,confers a growth advantage to the tumor cells and enables them to adapt to the tumor microenvironment.In this review,we have summarized current research on the expression and regulation of PKM2 in tumor cells,and its potential role in GI carcinogenesis and progression.Furthermore,we have also discussed the potential of PKM2 as a diagnostic and screening marker,and a therapeutic target in GI cancer.
文摘AIM: To examine the role of p38 during acute experimental cerulein pancreatitis. METHODS: Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347) and/or a specific p38 inhibitor (SB203580) and pancreatic stress kinase activity was determined. Parameters to assess pancreatitis included trypsin, amylase, lipase, pancreatic weight and histology. RESULTS: JNK inhibition with CEP1347 ameliorated pancreatitis, reducing pancreatic edema. In contrast, p38 inhibition with SB203580 aggravated pancreatitis with higher trypsin levels and, with induction of acinar necrosis not normally found after cerulein hyperstimulation. Simultaneous treatment with both CEP1347 and SB203580 mutually abolished the effects of either compound on cerulein pancreatitis. CONCLUSION: Stress kinases modulate pancreatitis differentially. JNK seems to promote pancreatitis development, possibly by supporting inflammatory reactions such as edema formation while its inhibition ameliorates pancreatitis. In contrast, p38 may help reduce organ destruction while inhibition of p38 during induction of cerulein pancreatitis leads to the occurrence of acinar necrosis.
文摘Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations,including insulin resistance,visceral fat accumulation,and dyslipidemias,which increase the risk for developing cardiovascular disease.Metabolic syndrome is associated with augmented sympathetic tone,which could account for the etiology of pre-diabetic cardiomyopathy.This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustainedβ-adrenergic response in pre-diabetes,focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy.The research reviewed indicates that both protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ play important roles in functional responses mediated byβ1-adrenoceptors;therefore,alterations in the expression or function of these kinases can be deleterious.This review also outlines recent information on the role of protein kinase A and Ca^(2+)/calmodulin-dependent protein kinase Ⅱ in abnormal Ca^(2+)handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.
基金supported by the grants from the National Natural Science Foundation of China(No.3180030530)the Fundamental Research Funds for the Central Universities(2572019BA14)
文摘To understand the function of phosphoenolpyruvate carboxylase kinase,we introduced PtPEPCK1 gene under the control of 35S promoter into 84K poplar(Populus alba×P.glandulosa).PtPEPCK1 gene is well-known for its role in gluconeogenesis.However,our data confi rmed that it has signifi cant eff ects on amino acid biosynthesis and nitrogen metabolism.Immunohistochemistry and fl uorescence microscopy indicate that PtPEPCK1 is specifi cally expressed in the cytoplasm of the spongy and palisade tissues.Overexpression of PtPEPCK1 was characterized through transcriptomics and metabolomics.The metabolites concentration of the ornithine cycle and its precursors also increased,of which N-acetylornithine was up-regulated almost 50-fold and ornithine 33.7-fold.These were accompanied by a massive increase in levels of several amino acids.Therefore,overexpression of PtPEPCK1 increases amino acid levels with urea cycle disorder.
基金National Natural Science Foundation of China(81703529)
文摘OBJECTIVE To investigate berberine(BBR)attenuates arthritis in adjuvant-induced arthritic(AA)rats associated with regulating the energy metabolism and correcting the polarization of macrophages through activation of AMP-activated protein kinase(AMPK)and inhibition of hypoxia inducible factor 1α(HIF-1α).METHODS AA rats were treated with BBR(40,80,or 160 mg·kg-1)from days 15 to 29 after immunization.The histopathology of ankle joint was examined through hematoxylin-eosin(HE)staining.The concentrations of tumour necrosis factor-α(TNF-α),interleukin-6(IL-6),IL-1β,IL-2,IL-17A,interferon-gamma(IFN-γ),monocyte chemotactic protein 1(MCP-1),IL-4,IL-10,transforming growth factor-β1(TGF-β1),ATP,and lactic acid were measured by using ELISA kits.The percentage of M1 and M2 macro⁃phage cells in joint tissues were evaluated by immune-fluorescence.The expressions of p-AMPK and HIF-1αin joint of AA rats were determined according to immunohistochemistry analysis.The migration of macrophage was detected by Transwell assays.The expression of inducible nitric oxide synthase(iNOS),Arginase-1(Arg1),p-AMPK,AMPK and HIF-1αwere examined by Western blotting.The labeled macrophages were observed with laser confocal microscopy.RESULTS BBR relieved signs and symptoms of AA rats and reversed pathological changes.BBR treatment group exhibited decreases in pro-inflammatory cytokines(TNF-α,IL-1β,IL-6,IL-2,IL-17A,IFN-γ,and MCP-1)coupled with increases anti-inflammatory cytokines(IL-4,IL-10,TGF-β1)in the serum.The number of M1 macrophage was reduced,while the number of M2 macrophage was increased in BBR group joint tissues.Moreover,BBR showed marked up-regu⁃lation the expression of p-AMPK and down-regulation the expression of HIF-1αin joint of AA rats.Next in vitro study,we found BBR up-regulated the expression of p-AMPK,Arg1(M2 marker)and down-regulated the expression of HIF-1α,iNOS(M1 marker)induced by LPS in peritoneal macrophages from normal SD rat.Furthermore,BBR treatment inhibited the migration of macrophages stimulated by LPS.The level of ATP was elevated and lactic acid was reduced in LPSinduced macrophages after treated by BBR.However,Compound C significantly attenuated the effects of BBR on acti⁃vated macrophages.CONCLUSION BBR alleviates inflammation by regulating energy metabolism and correcting the polarization of macrophage through AMPK-HIF-1αpathway.BBR might have great therapeutic value for RA.
文摘Obesity is crucially involved in many metabolic diseases,such as type 2 diabetes,cardiovascular disease and cancer.Regulating the number or size of adipocytes has been suggested to be a potential treatment for obesity.In this study,we investigated the effect of pyrocincholic acid 3β-O-β-D-quinovopyranosyl-28-O-β-D-glucopyranoside(PAQG),a 27-nor-oleanolic acid saponin extracted from Metadina trichotoma,on adipogenesis and lipid metabolism in 3T3-L1 adipocytes.The 3T3-L1 pre-adipocytes were incubated with vehicle or PAQG for 6 days in differentiation process.PAQG significantly reduced the adipogenesis,adiponectin secretion and the expression level of key transcription factors related to adipogenesis,such as PPARc,C/EBPb,C/EBPa,and FABP4.Moreover,PAQG increased the levels of FFA and glycerol in medium and reduced TG level in mature adipocytes.Interestingly,PAQG not only promoted the activation of AMPK and genes involved in fatty oxidation including PDK4 and CPT1a,but also inhibited those genes involved in fatty acid biosynthesis,such as SREBP1c,FAS,ACCa and SCD1.In conclusion,PAQG inhibits the differentiation and regulates lipid metabolism of 3T3-L1 cells via AMPK pathway,suggesting that PAQG may be a novel and promising natural product for the treatment of obesity and hyperlipidemia.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82104827 and 82274336)the National High Level Hospital Clinical Research Funding,China(Grant No.:2022-PUMCH-A-265)the Young Elite Scientists Sponsorship Program by China Association of Chinese Medicine(Grant No.:CACM-2022-QNRC2-B14).
文摘Diabetic peripheral neuropathy (DPN) is a common and devastating complication of diabetes, for which effective therapies are currently lacking. Disturbed energy status plays a crucial role in DPN pathogenesis. However, the integrated profile of energy metabolism, especially the central carbohydrate metabolism, remains unclear in DPN. Here, we developed a metabolomics approach by targeting 56 metabolites using high-performance ion chromatography-tandem mass spectrometry (HPIC-MS/MS) to illustrate the integrative characteristics of central carbohydrate metabolism in patients with DPN and streptozotocin-induced DPN rats. Furthermore, JinMaiTong (JMT), a traditional Chinese medicine (TCM) formula, was found to be effective for DPN, improving the peripheral neurological function and alleviating the neuropathology of DPN rats even after demyelination and axonal degeneration. JMT ameliorated DPN by regulating the aberrant energy balance and mitochondrial functions, including excessive glycolysis restoration, tricarboxylic acid cycle improvement, and increased adenosine triphosphate (ATP) generation. Bioenergetic profile was aberrant in cultured rat Schwann cells under high-glucose conditions, which was remarkably corrected by JMT treatment. In-vivo and in-vitro studies revealed that these effects of JMT were mainly attributed to the activation of adenosine monophosphate (AMP)-activated protein kinase (AMPK) and downstream peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Our results expand the therapeutic framework for DPN and suggest the integrative modulation of energy metabolism using TCMs, such as JMT, as an effective strategy for its treatment.
基金Supported by the National Institutes of Health Grants,No.K99HL146954 and No.R00HL146954the College of Pharmacy Seed Research Grant Program of the University of Tennessee Health Science Center.
文摘The prevalence of metabolic dysfunction-associated steatotic liver disease(MASLD)has increased significantly in recent decades and is projected to increase further due to the rising obesity rates.MASLD patients are at higher risk of developing advanced liver diseases“cirrhosis and hepatocellular carcinoma”as well as liver-or cardiovascular-related mortality.Existing lipid-lowering therapies failed to reduce the risk of mortality in these patients.Therefore,there is an urgent need for pharmacotherapies that can control and even reverse this disease.Fanlian Huazhuo Formula(FLHZF)is a combination herbal preparation,and its various individual constituents regulate hepatic lipid metabolism,adipose tissue inflammation,and gut microbiota.Despite,these useful effects,limited information is available on its benefits in diet-induced hepatosteatosis.In this article,we discuss the research findings recently published about the therapeutic effects of FLHZF in suppressing MASLD development and underlying mechanisms.Utilizing a series of in vitro and in vivo experiments,the authors demonstrated for the first time that FLHZF suppresses MASLD in male mice possibly by inhibiting hepatic de novo lipogenesis pathways and reducing hepatocyte death.This study paves the way for future investigations aimed at investigating FLHZF’s role in inhibiting lipogenesis particularly using radioactively-labeled glucose and acetate,and governing hepatocyte mitochondrial function,gut microbiome profile,and its effects in other models of MASLD,and female mice.
基金supported by the National Natural Science Foundation of China,No.30971534125 Project of the Third Xiangya Hospital,China
文摘Studies have shown that glycolysis increases during seizures, and that the glycolytic metabolite lactic acid can be used as an energy source. However, how lactic acid provides energy for seizures and how it can participate in the termination of seizures remains unclear. We reviewed possible mechanisms of glycolysis involved in seizure onset. Results showed that lactic acid was involved in seizure onset and provided energy at early stages. As seizures progress, lactic acid reduces the pH of tissue and induces metabolic acidosis, which terminates the seizure. The specific mechanism of lactic acid-induced acidosis involves several aspects, which include lactic acid-induced inhibition of the glycolytic enzyme 6-diphosphate kinase-1, inhibition of the N-methyl-D-aspartate receptor, activation of the acid-sensitive 1A ion channel, strengthening of the receptive mechanism of the inhibitory neurotransmitter Y-aminobutyric acid, and changes in the intra- and extracellular environment.
文摘背景:巨噬细胞的能量代谢和极化状态在动脉粥样硬化的进展中起关键作用。中医药通过调控巨噬细胞代谢途径展示出防治动脉粥样硬化的潜力。目的:综述腺苷酸活化蛋白激酶调控巨噬细胞能量代谢和极化状态的研究进展,并探讨中医药防治动脉粥样硬化的作用机制。方法:计算机检索Web of Science、PubMed及中国知网等数据库,检索时限为各数据库建库至2024年6月。中文检索词为“AMPK,脂肪酸氧化,巨噬细胞极化,中药,动脉粥样硬化,冠心病”等;英文检索词为“AMPK,fatty acid oxidation,macrophage polarization,Traditional Chinese Medicine,atherosclerosis,coronary heart disease”等,最终纳入62篇文献。结果与结论:①巨噬细胞的能量代谢从氧化磷酸化向糖酵解的转变,在动脉粥样硬化进展中起关键作用。在巨噬细胞中腺苷酸活化蛋白激酶激活后,通过促进脂肪酸氧化和M2型极化,发挥抗炎和稳定动脉斑块的作用。②中药单药(如人参、黄芪、黄精等)及复方(如黄连解毒汤、养心舒脉颗粒、调肝导浊方等)通过调控腺苷酸活化蛋白激酶途径干预核因子κB、过氧化物酶体增殖物激活受体γ、哺乳动物雷帕霉素靶蛋白等多条信号通路影响巨噬细胞的代谢方式,改变细胞功能,从而发挥治疗疾病的作用。③未来的研究应关注腺苷酸活化蛋白激酶、代谢与极化途径的相互作用,以及中药如何通过这些途径发挥治疗作用,为动脉粥样硬化的治疗提供新的策略。
基金This project was supported by grants from the National Natural Science Foundation of China(82273387,82273386,82073217,32270711,82073218 and 82003084)the National Key Research and Develop-ment Program of China(2018YFC1312100)+3 种基金Beijing Nova Program(20220484230)Shanghai Municipal Science and Technology Major Project(2018SHZDZX05)Shanghai Municipal Key Clinical Specialty,CAMS Innovation Fund for Medical Sciences(CIFMS)(2019-I2M-5-058)the State Key Laboratory of Proteomics(SKLP-K202004).
文摘Background:Intrahepatic cholangiocarcinoma(iCCA)is a highly heteroge-neous and lethal hepatobiliary tumor with few therapeutic strategies.The metabolic reprogramming of tumor cells plays an essential role in the develop-ment of tumors,while the metabolic molecular classification of iCCA is largely unknown.Here,we performed an integrated multiomics analysis and metabolic classification to depict differences in metabolic characteristics of iCCA patients,hoping to provide a novel perspective to understand and treat iCCA.Methods:We performed integrated multiomics analysis in 116 iCCA samples,including whole-exome sequencing,bulk RNA-sequencing and proteome anal-ysis.Based on the non-negative matrix factorization method and the protein abundance of metabolic genes in human genome-scale metabolic models,the metabolic subtype of iCCA was determined.Survival and prognostic gene analy-ses were used to compare overall survival(OS)differences between metabolic subtypes.Cell proliferation analysis,5-ethynyl-2’-deoxyuridine(EdU)assay,colony formation assay,RNA-sequencing and Western blotting were performed to investigate the molecular mechanisms of diacylglycerol kinaseα(DGKA)in iCCA cells.Results:Three metabolic subtypes(S1-S3)with subtype-specific biomarkers of iCCA were identified.These metabolic subtypes presented with distinct prog-noses,metabolic features,immune microenvironments,and genetic alterations.The S2 subtype with the worst survival showed the activation of some special metabolic processes,immune-suppressed microenvironment and Kirsten ratsar-coma viral oncogene homolog(KRAS)/AT-rich interactive domain 1A(ARID1A)mutations.Among the S2 subtype-specific upregulated proteins,DGKA was further identified as a potential drug target for iCCA,which promoted cell proliferation by enhancing phosphatidic acid(PA)metabolism and activating mitogen-activated protein kinase(MAPK)signaling.Conclusion:Viamultiomics analyses,we identified three metabolic subtypes of iCCA,revealing that the S2 subtype exhibited the poorest survival outcomes.We further identified DGKA as a potential target for the S2 subtype.
文摘Berberine(BBR) is a natural alkaloid isolated from the Coptis Chinensis.While this plant has been used in Ay-urvedic and Chinese medicine for more than 2500 years,interest in its effects in metabolic and cardiovascular disease has been growing in the Western world in the last decade.Many papers have been published in these years reporting beneficial effects in carbohydrate and lip-id metabolism,endothelial function and the cardiovascu-lar system.In this review,we report a detailed analysis of the scientific literature regarding this topic,describing the effects and the underlying mechanisms of BBR on carbohydrate and lipid metabolism,endothelial function and the cardiovascular system.
基金Supported by the National Natural Science Foundation of China:Study of Influence of Supplementing Qi and Activating Blood Circulation Herbs on Microvascular Dysfunction and Related Regulators of Myocardial Infarction Rats(No.81173142)Study of Influence of Supplementing Qi and Activating Blood Circulation Herbs on Mitochondrial Energy Metabolism and Signal Transduction of Myocardial Ischemia Rats(No.81473552)The Basic Research Program(graduate program)of Beijing university of Chinese Medicine:Study of Influence of Supplementing Qi and Activating Blood Circulation Herbs on Notch Signal Network of Myocardial Infarction Rats(No.2016-JYB-XS034)
文摘OBJECTIVE: To investigate the effect of Yiqihuoxue prescription(YQHX) from Traditional Chinese Medicine(TCM) on myocardial glucose and lipid metabolism after myocardial infarction via the cross talk between the liver kinase B1(LKB1)-dependent Notch1 and adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK). YQHX was prepared with substances with properties that benefit, to activate blood circulation based on the TCM theory.METHODS: Animal models of myocardial infarction were established by ligating Sprague Dawley rats' left anterior descending coronary arteries. The animals were randomly divided into a myocardial infarction(MI) group, a YQHX group, a perindopril group, a γ-secretase inhibitor, Notch signal inhibitor(DAPT) group, a DAPT+YQHX group and a sham group. The related drugs were administered on the second day after operation, and changes in the relevant indexes were examined on weeks 1 and 4.Changes in cardiac structure and function were examined by echocardiography. The glucose and free fatty acids(FFA) were examined by ELISA. The expression of Notch, LKB1 and AMPK m RNA was examined by a real-time fluorescence quantitative method. The expression of glucose transporter 4(GLUT4), and the expression of total acetyl-Co A carboxylase(ACC) and its phosphorylation were examined by western blotting.RESULTS: Compared with the sham group, the expression of Notch, LKB1 and AMPK m RNA in the MI group was lower. Compared with the MI group, the expression of these m RNAs in the YQHX and perindopril groups was higher, and their expression in the DAPT group was lower. At all time points, the protein expression of GLUT4 and p ACC decreased in the MI group. On week 1, the expression of p ACC protein was higher. In the DAPT group, the expression of p ACC protein decreased. Compared with the YQHX group, the expression of p ACC protein in the DAPT + YQHX group was lower. On week 4,compared with the MI group, the expression of GLUT4 protein in the YQHX group and the perindo-pril group was higher. The expression of GLUT4 protein in the DAPT group decreased. Compared with the YQHX group, the expression of GLUT4 protein in the DAPT+YQHX group was lower. There was no significant difference in the expression of ACC protein between the groups.CONCLUSION: YQHX promoted cross talk between the LKB1-dependent Notch1 and AMPK in myocardial tissue after myocardial infarction. Furthermore,it regulated the glucose and lipid metabolism of cardiomyocytes at different time points, thereby ameliorating the cardiac energy metabolism via different mechanisms and protecting the heart.
基金Supported by Natural Science Foundation of Zhejiang Province(No.LY20C060002)。
文摘Objective:To investigate the therapeutic effect of Sanhuang Xiexin Decoction(SXD)on triplenegative breast cancer(TNBC)in mice and its underlying mechanism.Methods:The high-performance liquid chromatography(HHLC)was used to quantitate and qualify SXD.A total of 15 female BALB/c mice were inoculated subcutaneously on the right hypogastrium with 3×10^(5) of 4T1-Luc cells to establish TNBC mouse model.All mice were divided randomly into 3 groups,including phosphate buffered solution(PBS),SXD and doxorubicin(DOX)groups(positive drug).Additionally,tumor growth,pathological changes,serum lipid profiles,expression of Janus kinase 2(JAK2)-signal transducer and activator of transcription 3(STAT3)signaling pathway and its key targets including inflammatory factors,cell cycle and epithelial-mesenchymal transition(EMT)markers were investigated.Besides,the biosafety of SXD was also evaluated in mice.Results:Rhein,coptisine,berberine hydrochloride and baicalin were all found in SXD,and the concentrations of these 4 components were 0.57,2.61,2.93,and 46.04 mg/g3respectively.The mouse experiment showed that SXD could notably suppress the development of tumors and reduce the density of tumor cells(P<0.01).The serum lipid analysis and Oil-Red-O staining both showed the differences,SXD group exhibited higher serum adiponectin and HDL-C levels with lower TC and LDL-C levels compared to the PBS and DOX groups(P<0.05 or P<0.01),respectively.SXD also decreased the levels of phospho-JAK2(p-JAK2),phospho-STAT3(p-STAT3)expressions and its downstream factors,including mostly inflammatory cytokine,EMT markers,S phase of tumor cells and vascular endothelial growth factor(VEGF)expression(P<.05 or P<0.01),respectively.The biosafety assessment of SXD revealed low levels of toxicity in mice.Conclusion:SXD could inhibit TNBC by suppressing JAK2-STAT3 phosphorylation which may be associated with modulation of lipid metabolism.