Virus nucleoprotein (NP) is an emerging target for drug development for Influenza. We designed benzamide derivatives as new inhibitors of NP that demonstrate good potency in blocking influenza A. Screening revealed th...Virus nucleoprotein (NP) is an emerging target for drug development for Influenza. We designed benzamide derivatives as new inhibitors of NP that demonstrate good potency in blocking influenza A. Screening revealed that compound 39 was the most potent molecule in the series, exhibiting IC<sub>50</sub> values of 0.46 and 0.27 μM in blocking the replication of H3N2 (A/HK/8/68) and (A/WSN/33) influenza A viral strains. The observed inhibition of viral replication correlated well with cytopathic protection. Furthermore, based on computational analysis and fluorescence microscopy, it was determined that compound 39 inhibited nuclear accumulation by targeting influenza A viral nucleoproteins. Finally, the rodent pharmacokinetic profile of compound 32 displayed half-life of greater than 4 hours and bioavailability greater than 20%, suggesting this class of molecules had drug-like properties.展开更多
A series of new substituted phenyl-coupled heterocyclic ethylamide derivatives was designed and synthe- sized as anti-influenza agents. In vitro anti-influenza A(A/PR/8/34 H1N1 strain) activities of these compounds ...A series of new substituted phenyl-coupled heterocyclic ethylamide derivatives was designed and synthe- sized as anti-influenza agents. In vitro anti-influenza A(A/PR/8/34 H1N1 strain) activities of these compounds were investigated and compared to those of the commercial antiviral drugs(Arbidol and Ribavirin) against the influenza. Specifically, among these twelve compounds exhibiting moderate levels of antiviral activity against influenza A, compounds 30c and 30d are the most effective ones, and as efficacious as the positive control Ribavirin and much more effective than Ingavirin and Arbidol, indicating that they are prospective candidates for further exploration. These results are also consistent with the docking study results in terms of the design of compounds targeting in- fluenza A via viral nucleoprotein.展开更多
文摘Virus nucleoprotein (NP) is an emerging target for drug development for Influenza. We designed benzamide derivatives as new inhibitors of NP that demonstrate good potency in blocking influenza A. Screening revealed that compound 39 was the most potent molecule in the series, exhibiting IC<sub>50</sub> values of 0.46 and 0.27 μM in blocking the replication of H3N2 (A/HK/8/68) and (A/WSN/33) influenza A viral strains. The observed inhibition of viral replication correlated well with cytopathic protection. Furthermore, based on computational analysis and fluorescence microscopy, it was determined that compound 39 inhibited nuclear accumulation by targeting influenza A viral nucleoproteins. Finally, the rodent pharmacokinetic profile of compound 32 displayed half-life of greater than 4 hours and bioavailability greater than 20%, suggesting this class of molecules had drug-like properties.
文摘A series of new substituted phenyl-coupled heterocyclic ethylamide derivatives was designed and synthe- sized as anti-influenza agents. In vitro anti-influenza A(A/PR/8/34 H1N1 strain) activities of these compounds were investigated and compared to those of the commercial antiviral drugs(Arbidol and Ribavirin) against the influenza. Specifically, among these twelve compounds exhibiting moderate levels of antiviral activity against influenza A, compounds 30c and 30d are the most effective ones, and as efficacious as the positive control Ribavirin and much more effective than Ingavirin and Arbidol, indicating that they are prospective candidates for further exploration. These results are also consistent with the docking study results in terms of the design of compounds targeting in- fluenza A via viral nucleoprotein.