期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Nucleus Pulposus Cells from Calcified Discs Promote the Degradation of the Extracellular Matrix through Upregulation of the GATA3 Expression
1
作者 Yu-lei DONG Ning TANG +1 位作者 Hong ZHAO Jin-qian LIANG 《Current Medical Science》 SCIE CAS 2023年第1期146-155,共10页
Objective Disc calcification is strongly associated with disc degeneration;however,the underlying mechanisms driving its pathogenesis are poorly understood.This study aimed to provide a gene expression profile of nucl... Objective Disc calcification is strongly associated with disc degeneration;however,the underlying mechanisms driving its pathogenesis are poorly understood.This study aimed to provide a gene expression profile of nucleus pulposus cells(NPCs)from calcified discs,and clarify the potential mechanism in disc degeneration.Methods Primary NPCs were isolated from calcified and control discs(CAL-NPC and CON-NPC),respectively.The proliferation and extracellular matrix(ECM)metabolism capacities of the cells were evaluated using MTT and Western blotting,respectively.RNA sequencing was used to identify differentially expressed genes(DEGs)in the CAL-NPCs.The biological functions of the DEGs were analyzed using the Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)databases.The transcription factor database and Cytoscape software were used to construct the transcription factor-DEGs regulatory network.The role of the verified transcription factor in NPC proliferation and ECM metabolism was also investigated.Results The CAL-NPCs exhibited a lower proliferation rate and higher ECM degradation capacity than the CON-NPCs.In total,375 DEGs were identified in the CAL-NPCs.The GO and KEGG analyses showed that the DEGs were primarily involved in the regulation of ribonuclease activity and NF-kappa B and p53 signaling pathways.GATA-binding protein 3(GATA3)with the highest verified levels was selected for further studies.Overexpression of GATA3 in the CON-NPCs significantly inhibited their proliferation and promoted their ECM degradation function,while the knockdown of GATA3 in the CAL-NPCs resulted in the opposite phenotypes.Conclusion This study provided a comprehensive gene expression profile of the NPCs from the calcified discs and supported that GATA3 could be a potential target for reversing calcification-associated disc degeneration. 展开更多
关键词 disc degeneration calcified disc nucleus pulposus cells RNA sequencing GATA-binding protein 3
下载PDF
Quercetin ameliorates oxidative stress-induced senescence in rat nucleus pulposus-derived mesenchymal stem cells via the miR-34a-5p/SIRT1 axis
2
作者 Wen-Jie Zhao Xin Liu +9 位作者 Man Hu Yu Zhang Peng-Zhi Shi Jun-Wu Wang Xu-Hua Lu Xiao-Fei Cheng Yu-Ping Tao Xin-Min Feng Yong-Xiang Wang Liang Zhang 《World Journal of Stem Cells》 SCIE 2023年第8期842-865,共24页
BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchym... BACKGROUND Intervertebral disc degeneration(IDD)is a main contributor to low back pain.Oxidative stress,which is highly associated with the progression of IDD,increases senescence of nucleus pulposus-derived mesenchymal stem cells(NPMSCs)and weakens the differentiation ability of NPMSCs in degenerated intervertebral discs(IVDs).Quercetin(Que)has been demonstrated to reduce oxidative stress in diverse degenerative diseases.AIM To investigate the role of Que in oxidative stress-induced NPMSC damage and to elucidate the underlying mechanism.METHODS In vitro,NPMSCs were isolated from rat tails.Senescence-associatedβ-galactosidase(SA-β-Gal)staining,cell cycle,reactive oxygen species(ROS),realtime quantitative polymerase chain reaction(RT-qPCR),immunofluorescence,and western blot analyses were used to evaluated the protective effects of Que.Meanwhile the relationship between miR-34a-5p and Sirtuins 1(SIRT1)was evaluated by dual-luciferase reporter assay.To explore whether Que modulates tert-butyl hydroperoxide(TBHP)-induced senescence of NPMSCs via the miR-34a-5p/SIRT1 pathway,we used adenovirus vectors to overexpress and downregulate the expression of miR-34a-5p and used SIRT1 siRNA to knockdown SIRT1 expression.In vivo,a puncture-induced rat IDD model was constructed,and X rays and histological analysis were used to assess whether Que could alleviate IDD in vivo.RESULTS We found that TBHP can cause NPMSCs senescence changes,such as reduced cell proliferation ability,increased SA-β-Gal activity,cell cycle arrest,the accumulation of ROS,and increased expression of senescence-related proteins.While abovementioned senescence indicators were significantly alleviated by Que treatment.Que decreased the expression levels of senescence-related proteins(p16,p21,and p53)and senescence-associated secreted phenotype(SASP),including IL-1β,IL-6,and MMP-13,and it increased the expression of SIRT1.In addition,the protective effects of Que on cell senescence were partially reversed by miR-34a-5p overexpression and SIRT1 knockdown.In vivo,X-ray,and histological analyses indicated that Que alleviated IDD in a punctureinduced rat model.CONCLUSION In summary,the present study provides evidence that Que reduces oxidative stress-induced senescence of NPMSCs via the miR-34a/SIRT1 signaling pathway,suggesting that Que may be a potential agent for the treatment of IDD. 展开更多
关键词 QUERCETIN nucleus pulposus-derived mesenchymal stem cells Oxidative stress SENESCENCE Intervertebral disc degeneration miR-34a-5p/SIRT1 pathway
下载PDF
How to enhance the ability of mesenchymal stem cells to alleviate intervertebral disc degeneration 被引量:1
3
作者 Qing-Xiang Zhang Min Cui 《World Journal of Stem Cells》 SCIE 2023年第11期989-998,共10页
Intervertebral disc(ID)degeneration(IDD)is one of the main causes of chronic low back pain,and degenerative lesions are usually caused by an imbalance between catabolic and anabolic processes in the ID.The environment... Intervertebral disc(ID)degeneration(IDD)is one of the main causes of chronic low back pain,and degenerative lesions are usually caused by an imbalance between catabolic and anabolic processes in the ID.The environment in which the ID is located is harsh,with almost no vascular distribution within the disc,and the nutrient supply relies mainly on the diffusion of oxygen and nutrients from the blood vessels located under the endplate.The stability of its internal environment also plays an important role in preventing IDD.The main feature of disc degeneration is a decrease in the number of cells.Mesenchymal stem cells have been used in the treatment of disc lesions due to their ability to differentiate into nucleus pulposus cells in a nonspecific anti-inflammatory manner.The main purpose is to promote their regeneration.The current aim of stem cell therapy is to replace the aged and metamorphosed cells in the ID and to increase the content of the extracellular matrix.The treatment of disc degeneration with stem cells has achieved good efficacy,and the current challenge is how to improve this efficacy.Here,we reviewed current treatments for disc degeneration and summarize studies on stem cell vesicles,enhancement of therapeutic effects when stem cells are mixed with related substances,and improvements in the efficacy of stem cell therapy by adjuvants under adverse conditions.We reviewed the new approaches and ideas for stem cell treatment of disc degeneration in order to contribute to the development of new therapeutic approaches to meet current challenges. 展开更多
关键词 Mesenchymal stem cells Intervertebral disc degeneration Extracellular vesicles nucleus pulposus cells Tissue regeneration
下载PDF
Differentiation of Mesenchymal Stem Cells into Nucleus Pulposus Cells In Vitro 被引量:9
4
作者 陶凤华 李锋 +1 位作者 李光辉 潘锋 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2008年第2期156-158,共3页
To find a new source of seed cells for constructing tissue-engineered intervertebral disc, nucleus pulposus (NP) cells and mesenchymal stem cells (MSCs) were isolated from New Zealand white rabbits. The nucleus pu... To find a new source of seed cells for constructing tissue-engineered intervertebral disc, nucleus pulposus (NP) cells and mesenchymal stem cells (MSCs) were isolated from New Zealand white rabbits. The nucleus pulposus cells population was fluorescence-ladled and co-cultured with MSCs with or without direct contact. Morphological changes were observed every 12 h. Semi-quantitaive reverse transcriptase-polymerase chain reaction was performed to assess the expression levels of Sox-9, aggreacan and type Ⅱ collagen every 24 h after the co-culture. MSCs treated with direct contact rounded up and presented a ring-like appearance. The expression of marker genes was significantly increased when cells were co-cultured with direct contact for 24 h. No significant change was found after coculture without direct contact. Co-culture of NP cells and MSCs with direct contact is a reliable method for generating large amount of NP cells used for cell-based tissue engineering therapy. 展开更多
关键词 mesenchymal stem cells nucleus pulposus cells CO-CULTURE
下载PDF
6-gingerol protects nucleus pulposus-derived mesenchymal stem cells from oxidative injury by activating autophagy 被引量:10
5
作者 Li-Ping Nan Feng Wang +4 位作者 Yang Liu Zhong Wu Xin-Min Feng Jun-Jian Liu Liang Zhang 《World Journal of Stem Cells》 SCIE 2020年第12期1603-1622,共20页
BACKGROUND To date,there has been no effective treatment for intervertebral disc degeneration(IDD).Nucleus pulposus-derived mesenchymal stem cells(NPMSCs)showed encouraging results in IDD treatment,but the overexpress... BACKGROUND To date,there has been no effective treatment for intervertebral disc degeneration(IDD).Nucleus pulposus-derived mesenchymal stem cells(NPMSCs)showed encouraging results in IDD treatment,but the overexpression of reactive oxygen species(ROS)impaired the endogenous repair abilities of NPMSCs.6-gingerol(6-GIN)is an antioxidant and anti-inflammatory reagent that might protect NPMSCs from injury.AIM To investigate the effect of 6-GIN on NPMSCs under oxidative conditions and the potential mechanism.METHODS The cholecystokinin-8 assay was used to evaluate the cytotoxicity of hydrogen peroxide and the protective effects of 6-GIN.ROS levels were measured by 2´7´-dichlorofluorescin diacetate analysis.Matrix metalloproteinase(MMP)was detected by the tetraethylbenzimidazolylcarbocyanine iodide assay.TUNEL assay and Annexin V/PI double-staining were used to determine the apoptosis rate.Additionally,autophagy-related proteins(Beclin-1,LC-3,and p62),apoptosisassociated proteins(Bcl-2,Bax,and caspase-3),and PI3K/Akt signaling pathwayrelated proteins(PI3K and Akt)were evaluated by Western blot analysis.Autophagosomes were detected by transmission electron microscopy in NPMSCs.LC-3 was also detected by immunofluorescence.The mRNA expression of collagen II and aggrecan was evaluated by real-time polymerase chain reaction(RT-PCR),and the changes in collagen II and MMP-13 expression were verified through an immunofluorescence assay.RESULTS 6-GIN exhibited protective effects against hydrogen peroxide-induced injury in NPMSCs,decreased hydrogen peroxide-induced intracellular ROS levels,and inhibited cell apoptosis.6-GIN could increase Bcl-2 expression and decrease Bax and caspase-3 expression.The MMP,Annexin V-FITC/PI flow cytometry and TUNEL assay results further confirmed that 6-GIN treatment significantly inhibited NPMSC apoptosis induced by hydrogen peroxide.6-GIN treatment promoted extracellular matrix(ECM)expression by reducing the oxidative stress injury-induced increase in MMP-13 expression.6-GIN activated autophagy by increasing the expression of autophagy-related markers(Beclin-1 and LC-3)and decreasing the expression of p62.Autophagosomes were visualized by transmission electron microscopy.Pretreatment with 3-MA and BAF further confirmed that 6-GIN-mediated stimulation of autophagy did not reduce autophagosome turnover but increased autophagic flux.The PI3K/Akt pathway was also found to be activated by 6-GIN.6-GIN inhibited NPMSC apoptosis and ECM degeneration,in which autophagy and the PI3K/Akt pathway were involved.CONCLUSION 6-GIN efficiently decreases ROS levels,attenuates hydrogen peroxide-induced NPMSCs apoptosis,and protects the ECM from degeneration.6-GIN is a promising candidate for treating IDD. 展开更多
关键词 nucleus pulposus-derived mesenchymal stem cells 6-GINGEROL Intervertebral disc degeneration Oxidative stress AUTOPHAGY Apoptosis
下载PDF
Nucleus Transfer Efficiency of Ear Fibroblast Cells Isolated from Bama Miniature Pigs at Various Ages 被引量:3
6
作者 王庆华 彭云 +3 位作者 蔡信永 万萌 刘宇 魏泓 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2015年第4期585-590,共6页
Summary: Somatic cell nucleus transfer (SCNT) has been considered the most effective method for conserving endangered animals and expanding the quantity of adult animal models. Bama miniature pigs are genetically s... Summary: Somatic cell nucleus transfer (SCNT) has been considered the most effective method for conserving endangered animals and expanding the quantity of adult animal models. Bama miniature pigs are genetically stable and share similar biological features to humans. These pigs have been used to establish animal models for human diseases, and for many other applications. However, there is a pan- city of studies on the effect of ear fibroblasts derived from different age of adult Bama miniature pigs on nucleus transfer (NT). The present study examined the NT efficiency of ear fibroblasts from fetal, new- born, 1-, 2-, 4-, 6-, 12-month-old miniature pigs by using trypan blue staining, flow cytometry and NT technique, etc., and the cell biological function and SCNT efficiency were compared between groups. The results showed that ear fibroblasts grew well after passage in each group. Spindle-shaped cells ini- tially predominated, and gradually declined with increase of culture time and replaced by polygonal cells. Irregular cell growth occurred in the 2-month-old group and the elder groups. The growth curves of the ear fibroblasts were "S-shaped" in different age groups. The cell proliferation of postnatal ear fi- broblasts, especially those from 2-, 4-, 6-, 12-month-old miniature pigs was significantly different from that of fetus ear fibroblasts (P〈0.05 or P〈0.01). Two-month- and 4-month-old ear fibroblasts had a sig- nificantly higher proportion of G1 stage cells (85% to 91%) than those at 6 and 12 months (66% to 74%, P〈0.01). The blastocyst rate of reconstructed embryos originating from newborn, 1-, 2-, 4-month-old donor pigs was 6.06% to 7.69% with no significant difference from that in fetus fibroblast group (8.06%). It was concluded that 〈4-month-old adult Bama miniature pigs represent a better donor cell resource than elder pigs. 展开更多
关键词 somatic cell nucleus transfer Bama miniature pig age VIGOR ear fibroblast
下载PDF
Stromal cell-derived factor-1α promotes recruitment and differentiation of nucleus pulposus-derived stem cells 被引量:6
7
作者 Jin-Wei Ying Tian-Yong Wen +2 位作者 Shi-Shen Pei Ling-Hao Su Di-Ke Ruan 《World Journal of Stem Cells》 SCIE 2019年第3期196-211,共16页
BACKGROUND Intervertebral disc(IVD) degeneration is a condition characterized by a reduction in the water and extracellular matrix content of the nucleus pulposus(NP) and is considered as one of the dominating contrib... BACKGROUND Intervertebral disc(IVD) degeneration is a condition characterized by a reduction in the water and extracellular matrix content of the nucleus pulposus(NP) and is considered as one of the dominating contributing factors to low back pain. Recent evidence suggests that stromal cell-derived factor 1α(SDF-1α) and its receptor CX-C chemokine receptor type 4(CXCR4) direct the migration of stem cells associated with injury repair in different musculoskeletal tissues.AIM To investigate the effects of SDF-1α on recruitment and chondrogenic differentiation of nucleus pulposus-derived stem cells(NPSCs).METHODS We performed real-time RT-PCR and enzyme-linked immunosorbent assay to examine the expression of SDF-1α in nucleus pulposus cells after treatment with pro-inflammatory cytokines in vitro. An animal model of IVD degeneration was established using annular fibrosus puncture in rat coccygeal discs. Tissue samples were collected from normal control and degeneration groups.Differences in the expression of SDF-1α between the normal and degenerative IVDs were analyzed by immunohistochemistry. The migration capacity of NPSCs induced by SDF-1α was evaluated using wound healing and transwell migration assays. To determine the effect of SDF-1α on chondrogenic differentiation of NPSCs, we conducted cell micromass culture and examined the expression levels of Sox-9, aggrecan, and collagen II. Moreover, the roles of SDF-1/CXCR4 axis in the migration and chondrogenesis differentiation of NPSCs were analyzed by immunofluorescence, immunoblotting, and real-time RT-PCR.RESULTS SDF-1α was significantly upregulated in the native IVD cells cultured in vitro with pro-inflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α, mimicking the degenerative settings. Immunohistochemical staining showed that the level of SDF-1α was also significantly higher in the degenerative group than in the normal group. SDF-1α enhanced the migration capacity of NPSCs in a dose-dependent manner. In addition, SDF-1α induced chondrogenic differentiation of NPSCs, as evidenced by the increased expression of chondrogenic markers using histological and immunoblotting analyses. Realtime RT-PCR, immunoblotting, and immunofluorescence showed that SDF-1αnot only increased CXCR4 expression but also stimulated translocation of CXCR4 from the cytoplasm to membrane, accompanied by cytoskeletal rearrangement.Furthermore, blocking CXCR4 with AMD3100 effectively suppressed the SDF-1α-induced migration and differentiation capacities of NPSCs.CONCLUSION These findings demonstrate that SDF-1α has the potential to enhance recruitment and chondrogenic differentiation of NPSCs via SDF-1/CXCR4 chemotaxis signals that contribute to IVD regeneration. 展开更多
关键词 STROMAL cell-derived factor CXC CHEMOKINE receptor 4 nucleus pulposusderived stem cells INTERVERTEBRAL disc degeneration Endogenous regeneration
下载PDF
Normal and Degenerated Rabbit Nucleus Pulposus Cells in in vitro Cultures: A Biological Comparison 被引量:1
8
作者 何斌 王玉环 +2 位作者 杨坚 彭方亮 李锋 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2013年第2期228-233,共6页
This study examined the biological characteristics of normal and degenerated rabbit nucleus pulposus (NP) cells in vitro in order to provide seed cells for intervertebral disc (IVD) tissue engineering. A total of ... This study examined the biological characteristics of normal and degenerated rabbit nucleus pulposus (NP) cells in vitro in order to provide seed cells for intervertebral disc (IVD) tissue engineering. A total of 8 adult New Zealand white rabbits underwent annulus puncture to establish models ofintervertebral disc degeneration (IDD). Four weeks later, normal and degenerated NP cells were obtained. Cell morphology was observed by light and electron microscopy. Cell viability was measured by MTT assay. Cell cycle and expression of extracellular matrix (ECM)-related genes (aggrecan and type II col- lagen) were determined by using flow cytometry and RT-PCR respectively. The growth curve of normal NP cells showed that the cells at passage 4 tended to slowly grow on the fifth day of culture. The density of normal NP cells at passages 5 to 7 was significantly less than that of the first-passage cells 2 or 3 days after seeding (P〈0.05). The degenerated NP cells at passage 3 showed slow growth at 4th day. After 5 passages, the degenerated NP cells assumed stagnant growth and the growth seemed to stop at passage 7. The MTT assay revealed that for both normal and degenerated NP cells, the absorbance (.4) value at passages 4-7 was obviously decreased as compared with that at passage 1 (P〈0.05). Cell cycle analysis showed that the proportion of normal NP cells at G1 phase was 65.4%-3.5%, significantly lower than that of degenerated NP cells at the same cell cycle phase With the value being 77.6%-4.8%. The degen- erated NP cells were predominantly arrested at Gt phase and failed to enter S phase. The expression of type II collagen and aggrecan was significantly decreased with passaging. It was concluded that normal NP cells possessed good viability and proliferative capacity by the third passage, and they could secrete large amounts of ECM within this period. The normal NP cells may serve as seed cells for IVD tissue engineering. 展开更多
关键词 nucleus pulposus cells in vitro culture biological characteristics
下载PDF
Urolithin a alleviates oxidative stress-induced senescence in nucleus pulposus-derived mesenchymal stem cells through SIRT1/PGC-1α pathway 被引量:1
9
作者 Peng-Zhi Shi Jun-Wu Wang +6 位作者 Ping-Chuan Wang Bo Han Xu-Hua Lu Yong-Xin Ren Xin-Min Feng Xiao-Fei Cheng Liang Zhang 《World Journal of Stem Cells》 SCIE 2021年第12期1928-1946,共19页
BACKGROUND In degenerative intervertebral disc(IVD),an unfavorable IVD environment leads to increased senescence of nucleus pulposus(NP)-derived mesenchymal stem cells(NPMSCs)and the inability to complete the differen... BACKGROUND In degenerative intervertebral disc(IVD),an unfavorable IVD environment leads to increased senescence of nucleus pulposus(NP)-derived mesenchymal stem cells(NPMSCs)and the inability to complete the differentiation from NPMSCs to NP cells,leading to further aggravation of IVD degeneration(IDD).Urolithin A(UA)has been proven to have obvious effects in delaying cell senescence and resisting oxidative stress.AIM To explore whether UA can alleviate NPMSCs senescence and to elucidate the underlying mechanism.METHODS In vitro,we harvested NPMSCs from rat tails,and divided NPMSCs into four groups:the control group,H2O2 group,H2O2+UA group,and H2O2+UA+SR-18292 group.Senescence-associatedβ-Galactosidase(SA-β-Gal)activity,cell cycle,cell proliferation ability,and the expression of senescence-related and silent information regulator of transcription 1/PPAR gamma coactivator-1α(SIRT1/PGC-1α)pathway-related proteins and mRNA were used to evaluate the protective effects of UA.In vivo,an animal model of IDD was constructed,and Xrays,magnetic resonance imaging,and histological analysis were used to assess whether UA could alleviate IDD in vivo.RESULTS We found that H2O2 can cause NPMSCs senescence changes,such as cell cycle arrest,reduced cell proliferation ability,increased SA-β-Gal activity,and increased expression of senescence-related proteins and mRNA.After UA pretreatment,the abovementioned senescence indicators were significantly alleviated.To further demonstrate the mechanism of UA,we evaluated the mitochondrial membrane potential and the SIRT1/PGC-1αpathway that regulates mitochondrial function.UA protected mitochondrial function and delayed NPMSCs senescence by activating the SIRT1/PGC-1αpathway.In vivo,we found that UA treatment alleviated an animal model of IDD by assessing the disc height index,Pfirrmann grade and the histological score.CONCLUSION In summary,UA could activate the SIRT1/PGC-1αsignaling pathway to protect mitochondrial function and alleviate cell senescence and IDD in vivo and vitro. 展开更多
关键词 Urolithin A Mitochondrial function Oxidative stress SENESCENCE nucleus pulposus-derived Mesenchymal stem cells The silent information regulator of transcription 1/PPAR gamma coactivator-1αpathway
下载PDF
The Relationship between the Morphology of Nucleus of Liver Cells and the Liver Functions and Prognosis of Portal Hypertensio
10
作者 彭志海 唐华美 +1 位作者 马克忠 戴植本 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 1995年第2期104-107,共4页
The morphology of nucleus of liver cells from 30 patients with portal hypertension due to hepatic cirrhosis and 5 normal persons were measured using an image analyzer coupled with a computer. It was found that the dia... The morphology of nucleus of liver cells from 30 patients with portal hypertension due to hepatic cirrhosis and 5 normal persons were measured using an image analyzer coupled with a computer. It was found that the diameters, perimeters, areas and form factor (FF) of the nucleus of liver cirrhosis porial hypertension patients were significantly increased as compared with those of the normal subjects (P<0. 05 or P<0. 01). There was a very significant difference in this parameters between the normal persons and patients with Child-Pugh A liver funetion or patients with Child-Pugh C liver function (P<0. 01 for both). Significant difference in these parameters existed between the normal persons or patients with Child-Pugh A liver function and patients with liver functian of Child-Pugh B (P<0. 05). No significant difference in the parameter of optic density (OD) were found between the normal persons and patients with impairment of liver function of varying degrees (Child-Pugh Classification) (P>0. 05). Our results suggest that the hepatocytes of patients with portal hypertension due to hepatic cirrhosis became juvenile and the morphology of the hepatocytes of patients with impairment of liver function of Child-Pugh C changed obviously. The enlargement and sparsity of nucleus of hepatocytes as revealed by pathological examination is a sign of severe impairment of liver function. 展开更多
关键词 hepatic cirrhosis portal vein HYPERTENSION cell nucleus MORPHOMETRY
下载PDF
Epigenetics and chromatin plasticity in embryonic stem cells 被引量:3
11
作者 Terézia Pikrylová Jií Pacherník +1 位作者 Stanislav Kozubek Eva Bártová 《World Journal of Stem Cells》 SCIE CAS 2013年第3期73-85,共13页
The study of embryonic stem cells is in the spotlight in many laboratories that study the structure and function of chromatin and epigenetic processes. The key properties of embryonic stem cells are their capacity for... The study of embryonic stem cells is in the spotlight in many laboratories that study the structure and function of chromatin and epigenetic processes. The key properties of embryonic stem cells are their capacity for selfrenewal and their pluripotency. Pluripotent stem cells are able to differentiate into the cells of all three germ layers, and because of this property they represent a promising therapeutic tool in the treatment of diseases such as Parkinson's disease and diabetes, or in the healing of lesions after heart attack. As the basic nuclear unit, chromatin is responsible for the regulation of the functional status of cells, including pluripotency and differentiation. Therefore, in this review we discuss the functional changes in chromatin during differentiation and the correlation between epigenetics events and the differentiation potential of embryonic stem cells. In particular we focus on post-translational histone modification, DNA methylation and the heterochromatin protein HP1 and its unique function in mouse and human embryonic stem cells. 展开更多
关键词 CHROMATIN EPIGENETICS EMBRYONIC stem cells nucleus PLURIPOTENCY Differentiation
下载PDF
Morphometric study on Leydig cells in capsulotomized testis of rats 被引量:1
12
作者 QinDN LungMA 《Asian Journal of Andrology》 SCIE CAS CSCD 2002年第1期49-53,共5页
AIM: To further clarify the changes occurred in the testicular capsulotomized rats. METHODS: In testicular capsulotomized and sham-operated rats, the cross sectional area, the nucleus diameter and the number of Leydig... AIM: To further clarify the changes occurred in the testicular capsulotomized rats. METHODS: In testicular capsulotomized and sham-operated rats, the cross sectional area, the nucleus diameter and the number of Leydig cells were morphologically analyzed by the Vidas Image Processing System connected to a microscope. RESULTS: In the capsulotomized animals, the cross sectional area of Leydig cells was gradually increased from 30 days onwards. There was no obvious change in the nucleus diameter of Leydig cells. However, The Leydig cell number was significantly increased from day 30 onwards. CONCLUSION: In rats, testicular capsulotomy may induce hyperplasia/hypertrophy of Leydig cells in the testis. 展开更多
关键词 ANIMALS cell Count cell nucleus Image Processing Computer-Assisted Leydig cells Male RATS Rats Sprague-Dawley TESTIS
下载PDF
Role of 5-hydroxytryptamine expression in cerebellar Purkinje cells in obstructive sleep apnea syndrome 被引量:1
13
作者 Liping Peng Jinghua Wang +8 位作者 Lihong Zhang Pan Liu Min Wang Min Huang Shengnan Liu Pingping He Li Cui Mingxian Li Shao Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第8期606-610,共5页
In the present study, electrical stimulation to the rat insular cortex induced apnea or respiratory disturbance, reduced amplitude of genioglossal electromyogram, and decreased electromyogram integrals. In addition, a... In the present study, electrical stimulation to the rat insular cortex induced apnea or respiratory disturbance, reduced amplitude of genioglossal electromyogram, and decreased electromyogram integrals. In addition, arterial blood gas analysis showed arterial blood acidosis, reduced pH values, increased alkali reserve negative values, decreased peripheral blood 5-hydroxytryptamine content, and increased 5-hydroxytryptamine expression in cerebellar Purkinje cells. Following lidocaine injection to block the habenular nucleus, abnormalities in breath, genioglossal electromyogram, and blood gas values disappeared, and peripheral blood 5-hydroxytryptamine content returned to levels prior to electric stimulation. However, 5-hydroxytryptamine expression in cerebellar Purkinje cells remained high. The results suggested that 5-hydroxytryptamine expression in Purkinje cells did not correlate with ventilation function involving insular cortex and habenular nucleus. 展开更多
关键词 sleep apnea OBSTRUCTIVE CEREBELLUM 5-HYDROXYTRYPTAMINE insular cortex habenular nucleus Purkinje cells
下载PDF
Barriers to mesenchymal stromal cells for low back pain 被引量:1
14
作者 Bao-Gan Peng Xiu-Jie Yan 《World Journal of Stem Cells》 SCIE 2022年第12期815-821,共7页
Intervertebral disc degeneration is the main cause of low back pain.In the past 20 years,the injection of mesenchymal stromal cells(MSCs)into the nucleus pulposus of the degenerative disc has become the main approach ... Intervertebral disc degeneration is the main cause of low back pain.In the past 20 years,the injection of mesenchymal stromal cells(MSCs)into the nucleus pulposus of the degenerative disc has become the main approach for the treatment of low back pain.Despite the progress made in this field,there are still many barriers to overcome.First,intervertebral disc is a highly complex loadbearing composite tissue composed of annulus fibrosus,nucleus pulposus and cartilaginous endplates.Any structural damage will change its overall biomechanical function,thereby causing progressive degeneration of the entire intervertebral disc.Therefore,MSC-based treatment strategies should not only target the degenerated nucleus pulposus but also include degenerated annulus fibrosus or cartilaginous endplates.Second,to date,there has been relatively little research on the basic biology of annulus fibrosus and cartilaginous endplates,although their pathological changes such as annular tears or fissures,Modic changes,or Schmorl's nodes are more commonly associated with low back pain.Given the high complexity of the structure and composition of the annulus fibrosus and cartilaginous endplates,it remains an open question whether any regeneration techniques are available to achieve their restorative regeneration.Finally,due to the harsh microenvironment of the degenerated intervertebral disc,the delivered MSCs die quickly.Taken together,current MSC-based regenerative medicine therapies to regenerate the entire disc complex by targeting the degenerated nucleus pulposus alone are unlikely to be successful. 展开更多
关键词 Intervertebral disc degeneration Low back pain Mesenchymal stromal cells Regenerative medicine nucleus pulposus EDITORIAL
下载PDF
Ultrastructural Pathology of Nerve Cells in Mouse Brain Infected with Epidemic B Encephalitis Virus
15
作者 盛鹏 晏良遂 《Journal of Medical Colleges of PLA(China)》 CAS 1989年第2期151-157,共7页
An animal model of epidemic(Japanese)B encephalitis was estabilisged by injecting theJin Wei Yah 1 stain of B encephalitis virus into the peritoneal cavity of mice.The ultrastructuralchanges of the nerve cells in thei... An animal model of epidemic(Japanese)B encephalitis was estabilisged by injecting theJin Wei Yah 1 stain of B encephalitis virus into the peritoneal cavity of mice.The ultrastructuralchanges of the nerve cells in their brains were studied,special attention being paid to some types ofnerve cell in the cerebellar cortex.The infectet Purkinje cells and especially the granular cells showedspecial and inter,sting pathological features.These were compared with the changes found in the in-fected nerve cells in the cerebral cortex,diencephalon and mesencephalon.A radiating structure consisting of a microveside-microtubule aggregation body at the centerand endoplastic reticulum or virus replication multivesicular structures around it was often found in thein fected nerve cells.Its morphological features were described in detail,and its significance and the se-quenoe of events of its development discussed.In the late stage of infection,virus particles were found in the nuclei of part of the necroticcells.It is considered that they entered the nuclei from the cytoplasm during or after the death of theinfected cells.The observation smade in this study have comfimed in the granular cell of the cerebellum theidea of Chert et al.that the encephalitis B virus particle can he formed in the perinudear cistem ofthe infected nerve cell,and have brought forth further information in this respect.The way of releaseof the virus particles from the infected nerve cells observed in this study is fundamentally consistentwith that observed by Chen et al.but most of the virus particles left the nerve cell via the cell pro- 展开更多
关键词 NERVE cell ultrastructural pathology experimental B ENCEPHALITIS mice VIRUS replication perinuclear cistern radiating structure VIRUS particles necrotic cell nucleus
下载PDF
Exogenous BDNF and Chondroitinase ABC Consisted Biomimetic Microenvironment Regulates Survival,Migration and Differentiation of Human Neural Progenitor Cells Transplanted into a Rat Auditory Nerve 被引量:1
16
作者 Ajay Kale Ekaterina Novozhilova +3 位作者 Ulrica Englund-Johansson Samuel I.Stupp Bjorn Palmgren Petri Olivius 《Neuroscience & Medicine》 2014年第2期86-100,共15页
Current putative regeneration oriented studies express possible role of stem cell based implantation strategy in the restoration of fundamental perception of hearing. The present work utilizes a rat auditory nerve (AN... Current putative regeneration oriented studies express possible role of stem cell based implantation strategy in the restoration of fundamental perception of hearing. The present work utilizes a rat auditory nerve (AN) directed transplantation of human neural progenitor cells (HNPCs) as a cell replacement therapy for impaired auditory function. Groups of b-bungarotoxin induced auditory function compromised female rats were used to transplant HNPCs in the nerve trunk. In the treatment groups, brain derived neurotrophic factor (BDNF), peptide amphiphile nanofiber bioactive gel (Bgel) and Chondroitinase ABC (ChABC), a digestive enzyme that cleaves the core of chondroitin sulphate proteoglycans, were added along with HNPCs while the control groups were with PA inert gel (Igel) and devoid of ChABC. Six weeks post transplantation survival, migration, and differentiation of HNPCs were studied and compared. The groups treated with BDNF and Bgel showed improved survival and differentiation of transplanted HNPCs while the ChABC treated group showed significant migration of HNPCs along the AN and elongation of neuronal fibers along the nerve towards the cochlear nucleus (CN) which was characterized by immunocytochemical markers for human Nuclei (HuN), human mitochondria (HuM) and neuronal β-tubulin (Tuj1). These findings show that addition of BDNF and ChABC consisted Bgel environment facilitated HNPC survival, migration and differentiation along the transplanted rat AN towards the CN. This transplantation strategy provides unique experimental validation for futuristic role of cell based biomaterial consisted neurotrophic factor application in clinically transferable treatment of sensorineural hearing loss (SNHL) along with cochlear implants (CI). 展开更多
关键词 Auditory Nerve Brain Derived Neurotrophic Factor CHONDROITINASE Cochlear nucleus Human Neural Progenitor cells Transplantation Transitional Zone Sensorineural Hearing Loss
下载PDF
Epigenetic Enabled Normal Human Cells, Lead to <i>First Cell</i>’s Unique Division System, Driving Tumorigenesis Evolution
17
作者 Kirsten H. Walen 《Journal of Cancer Therapy》 2022年第1期48-69,共22页
<p> <span><span style="font-family:;" "=""><span>Normal cells must become cancer-enabling before anything else occurs, according to latest literature. The goal in this ... <p> <span><span style="font-family:;" "=""><span>Normal cells must become cancer-enabling before anything else occurs, according to latest literature. The goal in this mini-review is to demonstrate special tetraploidy in the enabling process. This we have shown from genomic damage, DDR (DNA Damage Response) activity with skip of mitosis leading to diploid G2 cells at the G1 border in need of chromatin repair for continued cell cycling to the special tetraploid division system. In several studies</span><span> </span><span>specific methylation transferase genes were activated in normal human cells in tissue fields</span><span>, </span><span>containing different cell growth stages of the cancerous process. Histology studies, in addition to molecular chemistry for identification of oncogenic mutational change</span></span></span><span><span><span>,</span></span></span><span><span><span> w</span></span></span><span><span><span>ere</span></span></span><span><span><span style="font-family:;" "=""><span> a welcome change (see below). In a study on melanoma origin, DDR also showed arrested diploid cells regaining cycling from methylation transferase activity with causation of 2n melanocytes transforming to 4n melanoblasts, giving rise to epigenetic tumorigenesis enabled First Cells. Such First Cells were from Barrett’s esophagus shown to have inherited the unique division system from 4n diplochromosomal cells, first described in mouse ascites cancer cells (below). We discovered that the large nucleus prior to chromosomal division turned 90<span style="color:#4F4F4F;white-space:normal;background-color:#FFFFFF;">°</span> relative to the cytoskeleton axis, and divided genome reductive to diploid, First Cells, in a perpendicular </span><span>orientation to the surrounding normal cells they had originated from. This unique division system was herein shown to occur at metastasis stage, imply</span><span>ing activity throughout the cancerous evolution. Another study showed 4-chromatid tetraploidy in development to B-cell lymphoma, and that such cancer cells also proliferated with participation of this unusual division system. Such participation has long been known from Bloom’s inherited syndrome with repair chiasmas between the four chromatids, also an </span><i><span>in vitro</span></i><span> observation by us. Our cytogenetic approach also revealed that they believed mitotic division in cancer cells is wrong because such cell divisions were found to be from an adaptation between amitosis and mitosis, called amitotic</span></span></span></span><span><span><span>-</span></span></span><span><span><span style="font-family:;" "=""><span>mitosis. Amitosis means division without centrosomes, which has long been known from oral cancer cells, in that MOTCs (microtubule orga</span><span>nizing center) were lacking centrioles. This observation calls for re-introduction </span><span>of karyotype and cell division studies in cancer cell proliferation. It has high probability of contributing novel approaches to cancer control from screening of drugs against the amitotic-mitotic division apparatus.</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span> </p> <span></span><span></span> <p> <span></span> </p> 展开更多
关键词 Mitotic Slippage DNA Damage Repair Process 4-Chromatid Chromosomes Diplochromosome Tetraploidy 90°-4n nucleus Turn G1-Phase-Diploid cell Arrest Time Reduced cell Cycle Fitness Increase
下载PDF
An esterase-responsive ibuprofen nano-micelle pre-modified embryo derived nucleus pulposus progenitor cells promote the regeneration of intervertebral disc degeneration
18
作者 Kai-shun Xia Dong-dong Li +13 位作者 Cheng-gui Wang Li-wei Ying Jing-kai Wang Biao Yang Jia-wei Shu Xian-peng Huang Yu-ang Zhang Chao Yu Xiao-peng Zhou Fang-cai Li Nigel K.H.Slater Jian-bin Tang Qi-xin Chen Cheng-zhen Liang 《Bioactive Materials》 SCIE CSCD 2023年第3期69-85,共17页
Stem cell-based transplantation is a promising therapeutic approach for intervertebral disc degeneration(IDD).Current limitations of stem cells include with their insufficient cell source,poor proliferation capacity,l... Stem cell-based transplantation is a promising therapeutic approach for intervertebral disc degeneration(IDD).Current limitations of stem cells include with their insufficient cell source,poor proliferation capacity,low nucleus pulposus(NP)-specific differentiation potential,and inability to avoid pyroptosis caused by the acidic IDD microenvironment after transplantation.To address these challenges,embryo-derived long-term expandable nucleus pulposus progenitor cells(NPPCs)and esterase-responsive ibuprofen nano-micelles(PEG-PIB)were prepared for synergistic transplantation.In this study,we propose a biomaterial pre-modification cell strategy;the PEG-PIB were endocytosed to pre-modify the NPPCs with adaptability in harsh IDD microenvironment through inhibiting pyroptosis.The results indicated that the PEG-PIB pre-modified NPPCs exhibited inhibition of pyroptosis in vitro;their further synergistic transplantation yielded effective functional recovery,histological regeneration,and inhibition of pyroptosis during IDD regeneration.Herein,we offer a novel biomaterial pre-modification cell strategy for synergistic transplantation with promising therapeutic effects in IDD regeneration. 展开更多
关键词 Intervertebral disc degeneration nucleus pulposus progenitor cells Esterase-responsive nano micell Biomaterial pre-modification Synergistic transplantation therapy
原文传递
Specific Inhibitory Protein Dkk-1 Blocking Wnt/β-catenin Signaling Pathway Improve Protectives Effect on the Extracellular Matrix 被引量:4
19
作者 叶树楠 王晶 +5 位作者 杨述华 许伟华 谢卯 韩奎敬 张波 吴子晏 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2011年第5期657-662,共6页
The present study examined the role of Wnt/β-catenin signaling pathway in the degeneration of nucleus pulposus cells and the protective effect of DKK1 on nucleus pulposus cells. The model of nucleus pulposus cell deg... The present study examined the role of Wnt/β-catenin signaling pathway in the degeneration of nucleus pulposus cells and the protective effect of DKK1 on nucleus pulposus cells. The model of nucleus pulposus cell degeneration was induced by intra-disc injection of TNF-α, and the expression of β-catenin protein was detected by Western blotting. The cultured rabbit nucleus pulposus cells were divided into 4 groups. In group A, the cells were cultured with normal medium and served as control group. In group B, the cells were cultured with TNF-α and acted as degeneration group. In group C, the cells were cultured with TNF-α and transfected with Adv-eGFP and was used as fluorescence control group. In group D, the cells were cultured with TNF-α and transfected with Adv-hDKK1-eGFP, serving as intervention group. The expression of typeⅡcollagen, proteoglycan, β-catenin, and MMP-13 in each group was detected by immunocytochemistry and RT-PCR. The result showed that TNF-α increased the expression of β-catenin and MMP-13, and significantly inhibited the synthesis of type Ⅱ collagen and proteoglycan, which resulted in the degeneration of nucleus pulposus cells. This effect could be obviously reversed by DKK1. We are led to concluded that TNF-α could activate the Wnt/β-catenin signaling pathway, and increase the expression of MMP-13, thereby resulting in disc degeneration. Specifically blocking Wnt/β-catenin signaling pathway by DKK-1 could protect the normal metabolism of intervertebral disc tissue. The Wnt pathway plays an important role in the progression of the intervertebral disc degeneration. 展开更多
关键词 WNT/Β-CATENIN TNF-α DKK1 nucleus pulposus cells
下载PDF
Gene expression microarray analysis of the spinal trigeminal nucleus in a rat model of migraine with aura 被引量:3
20
作者 Ruozhuo Liu Shengyuan Yu +1 位作者 Fengpeng Li Enchao Qiu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第25期1931-1938,共8页
Cortical spreading depression can trigger migraine with aura and activate the trigeminal vascular system. To examine gene expression profiles in the spinal trigeminal nucleus in rats following cortical spreading depre... Cortical spreading depression can trigger migraine with aura and activate the trigeminal vascular system. To examine gene expression profiles in the spinal trigeminal nucleus in rats following cortical spreading depression-induced migraine with aura, a rat model was established by injection of 1 M potassium chloride, which induced cortical spreading depression. DNA microarray analysis revealed that, compared with the control group, the cortical spreading depression group showed seven upregulated genes-myosin heavy chain 1/2, myosin light chain 1, myosin light chain (phosphorylatable, fast skeletal muscle), actin alpha 1, homeobox B8, carbonic anhydrase 3 and an unknown gene. Two genes were downregulated-RGD1563441 and an unknown gene. Real-time quantitative reverse transcription-PCR and bioinformatics analysis indicated that these genes are involved in motility, cell migration, CO2/nitric oxide homeostasis and signal transduction. 展开更多
关键词 migraine with aura cortical spreading depression spinal nucleus of trigeminal nerve nervoussystem potassium chloride gene expression cell migration ubiquitin degradation ENZYME REGENERATION neural regeneration
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部