BACKGROUND There is a substantial population of long-stay patients who non-emergently transfer directly from the neonatal intensive care unit(NICU)to the pediatric intensive care unit(PICU)without an interim discharge...BACKGROUND There is a substantial population of long-stay patients who non-emergently transfer directly from the neonatal intensive care unit(NICU)to the pediatric intensive care unit(PICU)without an interim discharge home.These infants are often medically complex and have higher mortality relative to NICU or PICUonly admissions.Given an absence of data surrounding practice patterns for nonemergent NICU to PICU transfers,we hypothesized that we would encounter a broad spectrum of current practices and a high proportion of dissatisfaction with current processes.AIM To characterize non-emergent NICU to PICU transfer practices across the United States and query PICU providers’evaluations of their effectiveness.METHODS A cross-sectional survey was drafted,piloted,and sent to one physician representative from each of 115 PICUs across the United States based on membership in the PARK-PICU research consortium and membership in the Children’s Hospital Association.The survey was administered via internet(REDCap).Analysis was performed using STATA,primarily consisting of descriptive statistics,though logistic regressions were run examining the relationship between specific transfer steps,hospital characteristics,and effectiveness of transfer.RESULTS One PICU attending from each of 81 institutions in the United States completed the survey(overall 70%response rate).Over half(52%)indicated their hospital transfers patients without using set clinical criteria,and only 33%indicated that their hospital has a standardized protocol to facilitate non-emergent transfer.Fewer than half of respondents reported that their institution’s nonemergent NICU to PICU transfer practices were effective for clinicians(47%)or patient families(38%).Respondents evaluated their centers’transfers as less effective when they lacked any transfer criteria(P=0.027)or set transfer protocols(P=0.007).Respondents overwhelmingly agreed that having set clinical criteria and standardized protocols for non-emergent transfer were important to the patient-family experience and patient safety.CONCLUSION Most hospitals lacked any clinical criteria or protocols for non-emergent NICU to PICU transfers.More positive perceptions of transfer effectiveness were found among those with set criteria and/or transfer protocols.展开更多
In the current research,a thorough examination unfolds concerning the attributes of magnetohydrodynamic(MHD)boundary layer flow and heat transfer inherent to nanoliquids derived from Sisko Al_(2)O_(3)-Eg and TiO_(2)-E...In the current research,a thorough examination unfolds concerning the attributes of magnetohydrodynamic(MHD)boundary layer flow and heat transfer inherent to nanoliquids derived from Sisko Al_(2)O_(3)-Eg and TiO_(2)-Eg compositions.Such nanoliquids are subjected to an extending surface.Consideration is duly given to slip boundary conditions,as well as the effects stemming from variable viscosity and variable thermal conductivity.The analytical approach applied involves the application of suitable similarity transformations.These conversions serve to transform the initial set of complex nonlinear partial differential equations into a more manageable assembly of ordinary differential equations.Through the utilization of the FEM,these reformulated equations are solved,considering the specified boundary conditions.The outcomes attained are graphically depicted by means of plots and tables.These visual aids facilitate a comprehensive exploration of how diverse parameters exert influence over the distributions of velocity,temperature,and concentration.Furthermore,detailed scrutiny is directed towards the fluctuations characterizing pivotal parameters,viz.,Nusselt number,skin-friction coefficient,and Sherwood number.It is identified that the Nusselt number showcases a diminishing trend coinciding with increasing values of the volume fraction parameter(φ).This trend remains consistent regardless of whether the nanoliquid under consideration is Al_(2)O_(3)-Eg or TiO_(2)-Eg based.In contrast,both the skin-friction coefficient and Sherwood number assume lower values as the volume fraction parameter(φ)escalates.This pattern remains congruent across both classifications of nanoliquids.The findings of the study impart valuable insights into the complex interplay governing the characteristics of HMT pertaining to Sisko Al_(2)O_(3)-Eg and TiO_(2)-Eg nanoliquids along an extending surface.展开更多
Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical com...Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical comparison method and a criterion for the similarity of the physical and empirical macrohardness of a material are proposed.The physical properties of the hardness measurement process using the Calvert-Johnson method are shown.The physical reasons for the size effect when measuring macrohardness are considered.The universal physical unit and standard of macrohardness of kinetic macroindentation by a sphere is substantiated.展开更多
Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,nume...Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,numerical simulations are conducted on a cylindrical coolant channel and its surrounding solid regions.Validated numerical methods are used to determine the effect and mechanisms of power and its distribution,inlet temperature and velocity,and outlet pressure on the distribution and change trend of the axial Nusselt number.Furthermore,a theoretical framework that can describe the effect of power variation on the evolution of the thermal boundary layer is employed to formulate an axial distribution cor-relation for the Nusselt number of the coolant channel,under the assumption of a cosine distribution for the axial power.Based on the simulation results,the correlation coefficients are determined,and a semi-empirical relationship is identified under the corresponding operating conditions.The correlation derived in this study is consistent with the simulations,with an average relative error of 5.3%under the operating conditions.Finally,to improve the accuracy of the predictions near the entrance,a segmented correlation is developed by combining the Kays correlation with the aforementioned correlation.The new correlation reduces the average relative error to 2.9%and maintains satisfactory accuracy throughout the entire axial range of the channel,thereby demonstrating its applicability to turbulent heat transfer calculations for helium-xenon gas mixtures within the core environment.These findings provide valuable insights into the convective heat transfer behavior of a helium-xenon gas mixture in a core environment.展开更多
Based on single drop mass transfer models and two phase flow equation,a general equationfor calculating the‘true’height of transfer unit of extraction columns was derived and tested withfour types of extraction colu...Based on single drop mass transfer models and two phase flow equation,a general equationfor calculating the‘true’height of transfer unit of extraction columns was derived and tested withfour types of extraction columns with some different working systems.The calculated results fittedwell with those obtained by experiments.展开更多
A gas-cooled nuclear reactor combined with a Brayton cycle shows promise as a technology for highpower space nuclear power systems.Generally,a helium-xenon gas mixture with a molecular weight of14.5-40.0 g/mol is adop...A gas-cooled nuclear reactor combined with a Brayton cycle shows promise as a technology for highpower space nuclear power systems.Generally,a helium-xenon gas mixture with a molecular weight of14.5-40.0 g/mol is adopted as the working fluid to reduce the mass and volume of the turbomachinery.The Prandtl number for helium-xenon mixtures with this recommended mixing ratio may be as low as 0.2.As the convective heat transfer is closely related to the Prandtl number,different heat transfer correlations are often needed for fluids with various Prandtl numbers.Previous studies have established heat transfer correlations for fluids with medium-high Prandtl numbers(such as air and water)and extremely lowPrandtl fluids(such as liquid metals);however,these correlations cannot be directly recommended for such helium-xenon mixtures without verification.This study initially assessed the applicability of existing Nusselt number correlations,finding that the selected correlations are unsuitable for helium-xenon mixtures.To establish a more general heat transfer correlation,a theoretical derivation was conducted using the turbulent boundary layer theory.Numerical simulations of turbulent heat transfer for helium-xenon mixtures were carried out using Ansys Fluent.Based on simulated results,the parameters in the derived heat transfer correlation are determined.It is found that calculations using the new correlation were in good agreement with the experimental data,verifying its applicability to the turbulent heat transfer for helium-xenon mixtures.The effect of variable gas properties on turbulent heat transfer was also analyzed,and a modified heat transfer correlation with the temperature ratio was established.Based on the working conditions adopted in this study,the numerical error of the property-variable heat transfer correlation was almost within 10%.展开更多
The FCC unit with addition of various inventories of the FP-DSN type sulfur transfer additive was tested in a commercial scale. The effect of the sulfur transfer additive was analyzed by investigating the indicators r...The FCC unit with addition of various inventories of the FP-DSN type sulfur transfer additive was tested in a commercial scale. The effect of the sulfur transfer additive was analyzed by investigating the indicators related with the regenerator flue gas composition,the dry gas composition before desulfurization,the LPG composition before desulfurization,the acid gas,and the yield of gasoline and diesel. The test results indicated that the sulfur was trans ferred from the feed stream into the dry gas,LPG and acid gas,and the sulfur transfer effect was obvious only when the inventory of sulfur transfer additive exceeded over 2.0% of total FCC catalyst inventory.展开更多
In this work, an analytical study is carried out on double-diffusive natural convection through a horizontal anisotropic porous layer saturated with a non-Newtonian fluid by using the Darcy model with the Boussinesq a...In this work, an analytical study is carried out on double-diffusive natural convection through a horizontal anisotropic porous layer saturated with a non-Newtonian fluid by using the Darcy model with the Boussinesq approximations. The horizontal walls of the system are subject to vertical uniform fluxes of heat and mass, whereas the vertical walls are assumed to be adiabatic and impermeable. The Soret effect is taken into consideration. Based on parallel flow approximation theory, the problem is solved in the limit of a thin layer and documented the effects of the physical parameters describing this investigation.展开更多
High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incom...High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically.展开更多
Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concern...Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.展开更多
The ONIOM quantum mechanics method is used to study the reaction of one-carbon unit transfer from an imidazolidine to 6- aminouracil model with the participation of water molecules.The computation results show that in...The ONIOM quantum mechanics method is used to study the reaction of one-carbon unit transfer from an imidazolidine to 6- aminouracil model with the participation of water molecules.The computation results show that in this reaction the participation of H_2O molecule makes the energy barrier lower because of the H-bond interaction.展开更多
ONIOM quantum mechanics method is used in this paper to study one-carbon unit transfer from imidazolidine to 6-aminouracil derivates. The computation results show that this reaction can be completed via three paths ow...ONIOM quantum mechanics method is used in this paper to study one-carbon unit transfer from imidazolidine to 6-aminouracil derivates. The computation results show that this reaction can be completed via three paths owing to the three different proton transfer modes. By calculation and analysis, we can find the direct proton transfer is the preferable pathway.展开更多
The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced ...The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced in the drying chamber. Then at steady time intervals, the sample is withdrawn from the drying chamber, for a rapid weighing. After each weighing, the sample is reintroduced in the dryer. At each time interval, the ambient temperature of the drying chamber and its relative humidity γ are measured by a thermo-hygrometer. From the experimental data, a theoretical determination of the moisture evaporated from the product was performed and a good agreement was found between the theoretical and experimental values, confirmed by the value of the RMSE. Those calculations used the constants in the Nusselt number found in literature. Then those constants were evaluated again, to get new values more suitable with the experimental data. The dimensionless numbers of Nusselt, Grashof and Prandtl were calculated. That allowed the calculation of the average value of the Nusselt number. The average convective heat transfer coefficient was determined.展开更多
This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the incl...This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.展开更多
The gravitational constant G is a basic quantity in physics, and, despite its relative imprecision, appears in many formulas, for example, also in the formulas of the Planck units. The “relative inaccuracy” lies in ...The gravitational constant G is a basic quantity in physics, and, despite its relative imprecision, appears in many formulas, for example, also in the formulas of the Planck units. The “relative inaccuracy” lies in the fact that each measurement gives different values, depending on where and with which device the measurement is taken. Ultimately, the mean value was formed and agreed upon as the official value that is used in all calculations. In an effort to explore the reason for the inaccuracy of this quantity, some formulas were configured using G, so that the respective quantity assumed the value = 1. The gravitational constant thus modified was also used in the other Planck equations instead of the conventional G. It turned out that the new values were all equivalent to each other. It was also shown that the new values were all represented by powers of the speed of light. The G was therefore no longer needed. Just like the famous mass/energy equivalence E = m * c2, similar formulas emerged, e.g. mass/momentum = m * c, mass/velocity = m * c2 and so on. This article takes up the idea that emerges in the article by Weber [1], who describes the gravitational constant as a variable (Gvar) and gives some reasons for this. Further reasons are given in the present paper and are computed. For example, the Planck units are set iteratively with the help of the variable Gvar, so that the value of one unit equals 1 in each case. In this article, eleven Planck units are set iteratively using the variable Gvar, so that the value of one unit equals 1 in each case. If all other units are based on the Gvar determined in this way, a matrix of values is created that can be regarded both as conversion factors and as equivalence relationships. It is astonishing, but not surprising that the equivalence relation E = m * c2 is one of these results. All formulas for these equivalence relationships work with the vacuum speed of light c and a new constant K. G, both as a variable and as a constant, no longer appears in these formulae. The new thing about this theory is that the gravitational constant is no longer needed. And if it no longer exists, it can no longer cause any difficulties. The example of the Planck units shows this fact very clearly. This is a radical break with current views. It is also interesting to note that the “magic” number 137 can be calculated from the distances between the values of the matrix. In addition, a similar number can be calculated from the distances between the Planck units. This number is 131 and differs from 137 with 4.14 percent. This difference has certainly often led to confusion, for example, when measuring the Fine Structure Constant.展开更多
Objective:To explore the clinical outcomes of the infertile women with retrieved oocytes less than or equal to 5 undergoing in vitro fertilization-embryo transfer(IVF-ET) or intracytoplasmic sperm injection(1CSI)....Objective:To explore the clinical outcomes of the infertile women with retrieved oocytes less than or equal to 5 undergoing in vitro fertilization-embryo transfer(IVF-ET) or intracytoplasmic sperm injection(1CSI). Methods:The clinical data of 216 embryo transfer cycles with retrieved oocytes less than or equal to 5 during the procedure of IVF/ICSI in Reproductive Medicine Center of the 105th Hospital of PLA from Jul.2008 to Dec.2011 were analyze retrospectively.All the patients were divided into group A(< 35 years),group B(35-39 years) and group C(≥40 years) according to the ages,and 409 IVF/ICSI cycles with patients’ age less than 35 years old and 6-15 retrieved oocytes in the same period were served as controlled group.Then the patients≥35 years were subdivided into gonadotropin-releasing hormone agonist(GnRH-a) long protocol group,GnRH-a short group and GnRH antagonist group according to the protocols of controlled ovarian hyperstimulation(COH).The clinical date and the outcomes were analyzed and compared among all groups. Results:There were significantly differences in clinical pregnancy rate(38.3%vs.19.4%) and early abortion rate(16.1%vs.50.0%) between group A and group C(P<0.05),and there were no significant differences in clinical pregnancy rate(38.3%vs.41.6%)and early abortion rate(16.1%vs.10.0%) between group A and control group(P>0.05).There were no significant differences in clinical pregnancy rates(29.01%vs.26.1%vs.25.9%) and early abortion rates(33.3%vs.33.3%vs.40.0%) among GnRH-a long protocol group,GnRH-a short group and GnRH antagonist group(P>0.05). Conclusions:Relatively satisfactory clinical outcomes of IVF/ICSI would still be got for the patients <35 years with retrieved oocytes less than or equal to 5,but whatever COH protocols such as GnRH-a long protocol,GnRH-a short and GnRH antagonist could not improve the outcomes of IVF/ICSI for the patients aged≥35 with retrieved oocytes less than or equal to 5.展开更多
Flow and heat transfer characteristic of supercritical carbon dioxide(SCO_(2))are numerically investigated in the horizontal and vertical tubes.TWL turbulent Prandtl number model could well describe the behavior of SC...Flow and heat transfer characteristic of supercritical carbon dioxide(SCO_(2))are numerically investigated in the horizontal and vertical tubes.TWL turbulent Prandtl number model could well describe the behavior of SCO_(2) affected by the buoyancy.Under the cooling condition,the heat transfer performance of SCO_(2) along the upward direction is best and that along the downward direction is worst when bulk fluid temperatures are below the pseudocritical temperature.Reducing the ratio of heat flux to mass flux could decrease the difference of convective heat transfer coefficient in three flow directions.Under the heating condition,heat transfer deterioration only occurs in vertical upward and horizontal flow directions.Heat transfer deterioration of SCO_(2) could be delayed by increasing the mass flux and the deterioration degree is weakened in the second half of tube along the vertical upward flow direction.Compared with the straight tube,the corrugated tube shows better comprehensive thermal performance.展开更多
We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolv...We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measure- ment based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.展开更多
A series of manganese-promoted MgAlFe mixed oxides, used as sulfur transfer catalysts, were prepared by acid-processed gelatin method and characterized by TGA-DTA, XRD, N2 adsorption-desorption and FT-IR techniques. I...A series of manganese-promoted MgAlFe mixed oxides, used as sulfur transfer catalysts, were prepared by acid-processed gelatin method and characterized by TGA-DTA, XRD, N2 adsorption-desorption and FT-IR techniques. It was found that the sulfur transfer catalysts with 0.5?3.0 wt% manganese showed its good dispersion in the precursor. The novel Mn/MgAlFe catalysts with 0.5?5.0 wt% manganese oxide showed a high oxidative adsorption rate and sulfur adsorption capacity, and 5.0 wt% Mn/MgAlFe sample was superior to the others for SO2 removal. Moreover, the presence of CO had no obvious effect on the adsorption activity of sulfur transfer catalysts for SO2 uptake.展开更多
The accuracy of the knowledge of mass transfer parameters (effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient) in the case of frying food, is essential and important for designin...The accuracy of the knowledge of mass transfer parameters (effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient) in the case of frying food, is essential and important for designing, modeling and process optimization. This study is undertaken to develop an approach for determining mass transfer parameters during frying of spherical rice cracker in sunflower oil at 150, 170 and 190 ℃. These parameters were evaluated from the plots of dimensionless concentration ratios against time of frying. Effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient ranged between 1.24×10^-8 to 2.36×10^-8 m^2/s, 1.96 to 2.34 and 5.51×10^-6 to 9.70×10^-6 m/s, respectively. Effective moisture diffusivity and mass transfer coefficient were found to increase with an increasing frying temperature, whereas mass transfer Biot number decreased. An Arrhenius-type relationship was found between effective diffusivity coefficient and frying temperature.展开更多
文摘BACKGROUND There is a substantial population of long-stay patients who non-emergently transfer directly from the neonatal intensive care unit(NICU)to the pediatric intensive care unit(PICU)without an interim discharge home.These infants are often medically complex and have higher mortality relative to NICU or PICUonly admissions.Given an absence of data surrounding practice patterns for nonemergent NICU to PICU transfers,we hypothesized that we would encounter a broad spectrum of current practices and a high proportion of dissatisfaction with current processes.AIM To characterize non-emergent NICU to PICU transfer practices across the United States and query PICU providers’evaluations of their effectiveness.METHODS A cross-sectional survey was drafted,piloted,and sent to one physician representative from each of 115 PICUs across the United States based on membership in the PARK-PICU research consortium and membership in the Children’s Hospital Association.The survey was administered via internet(REDCap).Analysis was performed using STATA,primarily consisting of descriptive statistics,though logistic regressions were run examining the relationship between specific transfer steps,hospital characteristics,and effectiveness of transfer.RESULTS One PICU attending from each of 81 institutions in the United States completed the survey(overall 70%response rate).Over half(52%)indicated their hospital transfers patients without using set clinical criteria,and only 33%indicated that their hospital has a standardized protocol to facilitate non-emergent transfer.Fewer than half of respondents reported that their institution’s nonemergent NICU to PICU transfer practices were effective for clinicians(47%)or patient families(38%).Respondents evaluated their centers’transfers as less effective when they lacked any transfer criteria(P=0.027)or set transfer protocols(P=0.007).Respondents overwhelmingly agreed that having set clinical criteria and standardized protocols for non-emergent transfer were important to the patient-family experience and patient safety.CONCLUSION Most hospitals lacked any clinical criteria or protocols for non-emergent NICU to PICU transfers.More positive perceptions of transfer effectiveness were found among those with set criteria and/or transfer protocols.
文摘In the current research,a thorough examination unfolds concerning the attributes of magnetohydrodynamic(MHD)boundary layer flow and heat transfer inherent to nanoliquids derived from Sisko Al_(2)O_(3)-Eg and TiO_(2)-Eg compositions.Such nanoliquids are subjected to an extending surface.Consideration is duly given to slip boundary conditions,as well as the effects stemming from variable viscosity and variable thermal conductivity.The analytical approach applied involves the application of suitable similarity transformations.These conversions serve to transform the initial set of complex nonlinear partial differential equations into a more manageable assembly of ordinary differential equations.Through the utilization of the FEM,these reformulated equations are solved,considering the specified boundary conditions.The outcomes attained are graphically depicted by means of plots and tables.These visual aids facilitate a comprehensive exploration of how diverse parameters exert influence over the distributions of velocity,temperature,and concentration.Furthermore,detailed scrutiny is directed towards the fluctuations characterizing pivotal parameters,viz.,Nusselt number,skin-friction coefficient,and Sherwood number.It is identified that the Nusselt number showcases a diminishing trend coinciding with increasing values of the volume fraction parameter(φ).This trend remains consistent regardless of whether the nanoliquid under consideration is Al_(2)O_(3)-Eg or TiO_(2)-Eg based.In contrast,both the skin-friction coefficient and Sherwood number assume lower values as the volume fraction parameter(φ)escalates.This pattern remains congruent across both classifications of nanoliquids.The findings of the study impart valuable insights into the complex interplay governing the characteristics of HMT pertaining to Sisko Al_(2)O_(3)-Eg and TiO_(2)-Eg nanoliquids along an extending surface.
文摘Results of analytical studies of the physical properties of the function and number of empirical macrohardness based on the standard experimental force diagram of kinetic macroindentation by a sphere.An analytical comparison method and a criterion for the similarity of the physical and empirical macrohardness of a material are proposed.The physical properties of the hardness measurement process using the Calvert-Johnson method are shown.The physical reasons for the size effect when measuring macrohardness are considered.The universal physical unit and standard of macrohardness of kinetic macroindentation by a sphere is substantiated.
基金The work was supported by the National Key R&D Program of China(No.2020YFB1901900)the National Natural Science Foundation of China(No.12275175)+2 种基金the Special Fund for Strengthening Industry of Shanghai(No.GYQJ-2018-2-02)the Shanghai Rising Star Program(No.21QA1404200)the Ling Chuang Research Project of the China National Nuclear Corporation.
文摘Helium-xenon cooled microreactors are a vital technological solution for portable nuclear reactor power sources.To exam-ine the convective heat transfer behavior of helium-xenon gas mixtures in a core environment,numerical simulations are conducted on a cylindrical coolant channel and its surrounding solid regions.Validated numerical methods are used to determine the effect and mechanisms of power and its distribution,inlet temperature and velocity,and outlet pressure on the distribution and change trend of the axial Nusselt number.Furthermore,a theoretical framework that can describe the effect of power variation on the evolution of the thermal boundary layer is employed to formulate an axial distribution cor-relation for the Nusselt number of the coolant channel,under the assumption of a cosine distribution for the axial power.Based on the simulation results,the correlation coefficients are determined,and a semi-empirical relationship is identified under the corresponding operating conditions.The correlation derived in this study is consistent with the simulations,with an average relative error of 5.3%under the operating conditions.Finally,to improve the accuracy of the predictions near the entrance,a segmented correlation is developed by combining the Kays correlation with the aforementioned correlation.The new correlation reduces the average relative error to 2.9%and maintains satisfactory accuracy throughout the entire axial range of the channel,thereby demonstrating its applicability to turbulent heat transfer calculations for helium-xenon gas mixtures within the core environment.These findings provide valuable insights into the convective heat transfer behavior of a helium-xenon gas mixture in a core environment.
基金Supported by the National Natural Science Foundation of China.
文摘Based on single drop mass transfer models and two phase flow equation,a general equationfor calculating the‘true’height of transfer unit of extraction columns was derived and tested withfour types of extraction columns with some different working systems.The calculated results fittedwell with those obtained by experiments.
基金supported by the National Key Research and Development Program of China(No.2018YFB1900501)the CNSA program(No.D010501)。
文摘A gas-cooled nuclear reactor combined with a Brayton cycle shows promise as a technology for highpower space nuclear power systems.Generally,a helium-xenon gas mixture with a molecular weight of14.5-40.0 g/mol is adopted as the working fluid to reduce the mass and volume of the turbomachinery.The Prandtl number for helium-xenon mixtures with this recommended mixing ratio may be as low as 0.2.As the convective heat transfer is closely related to the Prandtl number,different heat transfer correlations are often needed for fluids with various Prandtl numbers.Previous studies have established heat transfer correlations for fluids with medium-high Prandtl numbers(such as air and water)and extremely lowPrandtl fluids(such as liquid metals);however,these correlations cannot be directly recommended for such helium-xenon mixtures without verification.This study initially assessed the applicability of existing Nusselt number correlations,finding that the selected correlations are unsuitable for helium-xenon mixtures.To establish a more general heat transfer correlation,a theoretical derivation was conducted using the turbulent boundary layer theory.Numerical simulations of turbulent heat transfer for helium-xenon mixtures were carried out using Ansys Fluent.Based on simulated results,the parameters in the derived heat transfer correlation are determined.It is found that calculations using the new correlation were in good agreement with the experimental data,verifying its applicability to the turbulent heat transfer for helium-xenon mixtures.The effect of variable gas properties on turbulent heat transfer was also analyzed,and a modified heat transfer correlation with the temperature ratio was established.Based on the working conditions adopted in this study,the numerical error of the property-variable heat transfer correlation was almost within 10%.
文摘The FCC unit with addition of various inventories of the FP-DSN type sulfur transfer additive was tested in a commercial scale. The effect of the sulfur transfer additive was analyzed by investigating the indicators related with the regenerator flue gas composition,the dry gas composition before desulfurization,the LPG composition before desulfurization,the acid gas,and the yield of gasoline and diesel. The test results indicated that the sulfur was trans ferred from the feed stream into the dry gas,LPG and acid gas,and the sulfur transfer effect was obvious only when the inventory of sulfur transfer additive exceeded over 2.0% of total FCC catalyst inventory.
文摘In this work, an analytical study is carried out on double-diffusive natural convection through a horizontal anisotropic porous layer saturated with a non-Newtonian fluid by using the Darcy model with the Boussinesq approximations. The horizontal walls of the system are subject to vertical uniform fluxes of heat and mass, whereas the vertical walls are assumed to be adiabatic and impermeable. The Soret effect is taken into consideration. Based on parallel flow approximation theory, the problem is solved in the limit of a thin layer and documented the effects of the physical parameters describing this investigation.
基金supported by the National Natural Science Foundation of China(Nos.21905041,22279014)Jilin Province Major Science and Technology special project(Nos.20220301004GX+4 种基金20220301005GX)R&D Program of Power Batteries with Low Temperature and High Energy,Science and Technology Bureau of Changchun(No.19SS013)Key Subject Construction of Physical Chemistry of Northeast Normal UniversitySpecial foundation of Jilin Province Industrial Technology Research and Development(No.2019C042)the Fundamental Research Funds for the Central Universities(No.2412020FZ008)
文摘High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically.
基金supported by the National Key Research and Development Program of China(No.2022YFA1504100)the National Natural Science Foundation of China(Nos.22005215,22279089,and 22178251).
文摘Nickel-rich layered oxide cathode(LiNi_(x)Co_(y)Mn_(1−x−y)O_(2),x>0.5,NCM)shows substantial potential for applications in longer-range electrical vehicles.However,the rapid capacity decay and serious safety concerns impede its practical viability.This work provides a hydrogen-bonded organic framework(HOF)modification strategy to simultaneously improve the electrochemical performance,thermal stability and incombustibility of separator.Melamine cyanurate(MCA),as a low-cost and reliable flame-retardant HOF,was implemented in the separator modification layer,which can prevent the battery short circuit even at a high temperature.In addition,the supermolecule properties of MCA provide unique physical and chemical microenvironment for regulating ion-transport behavior in electrolyte.The MCA coating layer enabled the nickel-rich layered oxide cathode with a high-capacity retention of 90.3%after 300 cycles at 1.0 C.Collectively,the usage of MCA in lithium-ion batteries(LIBs)affords a simple,low-cost and efficient strategy to improve the security and service life of nickel-rich layered cathodes.
文摘The ONIOM quantum mechanics method is used to study the reaction of one-carbon unit transfer from an imidazolidine to 6- aminouracil model with the participation of water molecules.The computation results show that in this reaction the participation of H_2O molecule makes the energy barrier lower because of the H-bond interaction.
文摘ONIOM quantum mechanics method is used in this paper to study one-carbon unit transfer from imidazolidine to 6-aminouracil derivates. The computation results show that this reaction can be completed via three paths owing to the three different proton transfer modes. By calculation and analysis, we can find the direct proton transfer is the preferable pathway.
文摘The concern of the present work is the convective drying of empty cocoa shells in an indirect solar dryer. Some drying experiments, using one sample, were carried out. During the experiments, the sample is introduced in the drying chamber. Then at steady time intervals, the sample is withdrawn from the drying chamber, for a rapid weighing. After each weighing, the sample is reintroduced in the dryer. At each time interval, the ambient temperature of the drying chamber and its relative humidity γ are measured by a thermo-hygrometer. From the experimental data, a theoretical determination of the moisture evaporated from the product was performed and a good agreement was found between the theoretical and experimental values, confirmed by the value of the RMSE. Those calculations used the constants in the Nusselt number found in literature. Then those constants were evaluated again, to get new values more suitable with the experimental data. The dimensionless numbers of Nusselt, Grashof and Prandtl were calculated. That allowed the calculation of the average value of the Nusselt number. The average convective heat transfer coefficient was determined.
文摘This study introduces the representation of natural number sets as row vectors and pretends to offer a new perspective on the strong Goldbach conjecture. The natural numbers are restructured and expanded with the inclusion of the zero element as the source of a strong Goldbach conjecture reformulation. A prime Boolean vector is defined, pinpointing the positions of prime numbers within the odd number sequence. The natural unit primality is discussed in this context and transformed into a source of quantum-like indetermination. This approach allows for rephrasing the strong Goldbach conjecture, framed within a Boolean scalar product between the prime Boolean vector and its reverse. Throughout the discussion, other intriguing topics emerge and are thoroughly analyzed. A final description of two empirical algorithms is provided to prove the strong Goldbach conjecture.
文摘The gravitational constant G is a basic quantity in physics, and, despite its relative imprecision, appears in many formulas, for example, also in the formulas of the Planck units. The “relative inaccuracy” lies in the fact that each measurement gives different values, depending on where and with which device the measurement is taken. Ultimately, the mean value was formed and agreed upon as the official value that is used in all calculations. In an effort to explore the reason for the inaccuracy of this quantity, some formulas were configured using G, so that the respective quantity assumed the value = 1. The gravitational constant thus modified was also used in the other Planck equations instead of the conventional G. It turned out that the new values were all equivalent to each other. It was also shown that the new values were all represented by powers of the speed of light. The G was therefore no longer needed. Just like the famous mass/energy equivalence E = m * c2, similar formulas emerged, e.g. mass/momentum = m * c, mass/velocity = m * c2 and so on. This article takes up the idea that emerges in the article by Weber [1], who describes the gravitational constant as a variable (Gvar) and gives some reasons for this. Further reasons are given in the present paper and are computed. For example, the Planck units are set iteratively with the help of the variable Gvar, so that the value of one unit equals 1 in each case. In this article, eleven Planck units are set iteratively using the variable Gvar, so that the value of one unit equals 1 in each case. If all other units are based on the Gvar determined in this way, a matrix of values is created that can be regarded both as conversion factors and as equivalence relationships. It is astonishing, but not surprising that the equivalence relation E = m * c2 is one of these results. All formulas for these equivalence relationships work with the vacuum speed of light c and a new constant K. G, both as a variable and as a constant, no longer appears in these formulae. The new thing about this theory is that the gravitational constant is no longer needed. And if it no longer exists, it can no longer cause any difficulties. The example of the Planck units shows this fact very clearly. This is a radical break with current views. It is also interesting to note that the “magic” number 137 can be calculated from the distances between the values of the matrix. In addition, a similar number can be calculated from the distances between the Planck units. This number is 131 and differs from 137 with 4.14 percent. This difference has certainly often led to confusion, for example, when measuring the Fine Structure Constant.
文摘Objective:To explore the clinical outcomes of the infertile women with retrieved oocytes less than or equal to 5 undergoing in vitro fertilization-embryo transfer(IVF-ET) or intracytoplasmic sperm injection(1CSI). Methods:The clinical data of 216 embryo transfer cycles with retrieved oocytes less than or equal to 5 during the procedure of IVF/ICSI in Reproductive Medicine Center of the 105th Hospital of PLA from Jul.2008 to Dec.2011 were analyze retrospectively.All the patients were divided into group A(< 35 years),group B(35-39 years) and group C(≥40 years) according to the ages,and 409 IVF/ICSI cycles with patients’ age less than 35 years old and 6-15 retrieved oocytes in the same period were served as controlled group.Then the patients≥35 years were subdivided into gonadotropin-releasing hormone agonist(GnRH-a) long protocol group,GnRH-a short group and GnRH antagonist group according to the protocols of controlled ovarian hyperstimulation(COH).The clinical date and the outcomes were analyzed and compared among all groups. Results:There were significantly differences in clinical pregnancy rate(38.3%vs.19.4%) and early abortion rate(16.1%vs.50.0%) between group A and group C(P<0.05),and there were no significant differences in clinical pregnancy rate(38.3%vs.41.6%)and early abortion rate(16.1%vs.10.0%) between group A and control group(P>0.05).There were no significant differences in clinical pregnancy rates(29.01%vs.26.1%vs.25.9%) and early abortion rates(33.3%vs.33.3%vs.40.0%) among GnRH-a long protocol group,GnRH-a short group and GnRH antagonist group(P>0.05). Conclusions:Relatively satisfactory clinical outcomes of IVF/ICSI would still be got for the patients <35 years with retrieved oocytes less than or equal to 5,but whatever COH protocols such as GnRH-a long protocol,GnRH-a short and GnRH antagonist could not improve the outcomes of IVF/ICSI for the patients aged≥35 with retrieved oocytes less than or equal to 5.
文摘Flow and heat transfer characteristic of supercritical carbon dioxide(SCO_(2))are numerically investigated in the horizontal and vertical tubes.TWL turbulent Prandtl number model could well describe the behavior of SCO_(2) affected by the buoyancy.Under the cooling condition,the heat transfer performance of SCO_(2) along the upward direction is best and that along the downward direction is worst when bulk fluid temperatures are below the pseudocritical temperature.Reducing the ratio of heat flux to mass flux could decrease the difference of convective heat transfer coefficient in three flow directions.Under the heating condition,heat transfer deterioration only occurs in vertical upward and horizontal flow directions.Heat transfer deterioration of SCO_(2) could be delayed by increasing the mass flux and the deterioration degree is weakened in the second half of tube along the vertical upward flow direction.Compared with the straight tube,the corrugated tube shows better comprehensive thermal performance.
文摘We propose an arbitrary controlled-unitary (CU) gate and a bidirectional transfer scheme of quantum information (BTQI) for unknown photons. The proposed CU gate utilizes quantum non-demolition photon-number-resolving measure- ment based on the weak cross-Kerr nonlinearities (XKNLs) and two quantum bus beams; the proposed CU gate consists of consecutive operations of a controlled-path gate and a gathering-path gate. It is almost deterministic and is feasible with current technology when a strong amplitude of the coherent state and weak XKNLs are employed. Compared with the existing optical multi-qubit or controlled gates, which utilize XKNLs and homodyne detectors, the proposed CU gate can increase experimental realization feasibility and enhance robustness against decoherence. According to the CU gate, we present a BTQI scheme in which the two unknown states of photons between two parties (Alice and Bob) are mutually swapped by transferring only a single photon. Consequently, by using the proposed CU gate, it is possible to experimentally implement the BTQI scheme with a certain probability of success.
基金supported by the Foundation of Petrochina Company Limited(NO.07-03-G6)
文摘A series of manganese-promoted MgAlFe mixed oxides, used as sulfur transfer catalysts, were prepared by acid-processed gelatin method and characterized by TGA-DTA, XRD, N2 adsorption-desorption and FT-IR techniques. It was found that the sulfur transfer catalysts with 0.5?3.0 wt% manganese showed its good dispersion in the precursor. The novel Mn/MgAlFe catalysts with 0.5?5.0 wt% manganese oxide showed a high oxidative adsorption rate and sulfur adsorption capacity, and 5.0 wt% Mn/MgAlFe sample was superior to the others for SO2 removal. Moreover, the presence of CO had no obvious effect on the adsorption activity of sulfur transfer catalysts for SO2 uptake.
文摘The accuracy of the knowledge of mass transfer parameters (effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient) in the case of frying food, is essential and important for designing, modeling and process optimization. This study is undertaken to develop an approach for determining mass transfer parameters during frying of spherical rice cracker in sunflower oil at 150, 170 and 190 ℃. These parameters were evaluated from the plots of dimensionless concentration ratios against time of frying. Effective moisture diffusivity, mass transfer Biot number and mass transfer coefficient ranged between 1.24×10^-8 to 2.36×10^-8 m^2/s, 1.96 to 2.34 and 5.51×10^-6 to 9.70×10^-6 m/s, respectively. Effective moisture diffusivity and mass transfer coefficient were found to increase with an increasing frying temperature, whereas mass transfer Biot number decreased. An Arrhenius-type relationship was found between effective diffusivity coefficient and frying temperature.