期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Towards Science Unification through Number Theory
1
作者 F. M. Sanchez M. H. Grosmann +2 位作者 R. Veysseyre H. Veysseyre D. Weigel 《Advances in Pure Mathematics》 2021年第1期27-62,共36页
The Number Theory comes back as the heart of unified Science, in a Computing Cosmos using the bases 2;3;5;7 whose two symmetric combinations explain the main lepton mass ratios. The corresponding Holic Principle induc... The Number Theory comes back as the heart of unified Science, in a Computing Cosmos using the bases 2;3;5;7 whose two symmetric combinations explain the main lepton mass ratios. The corresponding Holic Principle induces a symmetry between the Newton and Planck constants which confirm the Permanent Sweeping Holography Bang Cosmology, with invariant baryon density 3/10, the dark baryons being dephased matter-antimatter oscillation. This implies the DNA bi-codon mean isotopic mass, confirming to 0.1 ppm the electron-based Topological Axis, whose terminal boson is the base 2 c-observable Universe in the base 3 Cosmos. The physical parameters involve the Euler idoneal numbers and the special Fermat primes of Wieferich (bases 2) and Mirimanoff (base 3). The prime numbers and crystallographic symmetries are related to the 4-fold structure of the DNA bi-codon. The forgotten Eddington’s proton-tau symmetry is rehabilitated, renewing the supersymmetry quest. This excludes the concepts of Multiverse, Continuum, Infinity, Locality and Zero-mass Particle, leading to stringent predictions in Cosmology, Particle Physics and Biology. 展开更多
关键词 number theory Optimal Computation Principle Holic Principle COSMOLOGY SUPERSYMMETRY String theory Bit-String Physics Cellular Automaton DNA nucleotides CRYSTALLOGRAPHY Sporadic Groups
下载PDF
Three- and Four-Dimensional Generalized Pythagorean Numbers
2
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2024年第1期1-15,共15页
The Pythagorean triples (a, b | c) of planar geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>=c<sup>2</sup> with integers (a, b, c) are generalized to 3D-Pythagorean ... The Pythagorean triples (a, b | c) of planar geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>=c<sup>2</sup> with integers (a, b, c) are generalized to 3D-Pythagorean quadruples (a, b, c | d) of spatial geometry which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>=d<sup>2</sup> with integers (a, b, c, d). Rules for a parametrization of the numbers (a, b, c, d) are derived and a list of all possible nonequivalent cases without common divisors up to d<sup>2</sup> is established. The 3D-Pythagorean quadruples are then generalized to 4D-Pythagorean quintuples (a, b, c, d | e) which satisfy the equation a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup>+d<sup>2</sup>=e<sup>2</sup> and a parametrization is derived. Relations to the 4-square identity are discussed which leads also to the N-dimensional case. The initial 3D- and 4D-Pythagorean numbers are explicitly calculated up to d<sup>2</sup>, respectively, e<sup>2</sup>. 展开更多
关键词 number theory Pythagorean Triples Tesseract 4-Square Identity Diophantine Equation
下载PDF
How Prime Numbers Are Interconnected and Built with Two Equations: Addition and Subtraction Rules the Function (6µ)
3
作者 John Richard Wisdom 《Advances in Pure Mathematics》 2024年第4期228-241,共14页
Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , ... Are all prime numbers linked by four simple functions? Can we predict when a prime will appear in a sequence of primes? If we classify primes into two groups, Group 1 for all primes that appear before ζ (such that , for instance 5, ), an even number divisible by 3 and 2, and Group 2 for all primes that are after ζ (such that , for instance 7), then we find a simple function: for each prime in each group, , where n is any natural number. If we start a sequence of primes with 5 for Group 1 and 7 for Group 2, we can attribute a μ value for each prime. The μ value can be attributed to every prime greater than 7. Thus for Group 1, and . Using this formula, all the primes appear for , where μ is any natural number. 展开更多
关键词 number theory Prime number Groups Twin Primes Prime Structure and Sequence Prime Subtraction and Addition
下载PDF
A Number Theoretic Analysis of the Enthalpy, Enthalpy Energy Density, Thermodynamic Volume, and the Equation of State of a Modified White Hole, and the Implications to the Quantum Vacuum Spacetime, Matter Creation and the Planck Frequency
4
作者 Michele Nardelli Amos S. Kubeka Alizera Amani 《Journal of Modern Physics》 2024年第1期1-50,共50页
In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Th... In this paper, we analyze the enthalpy, enthalpy energy density, thermodynamic volume, and the equation of state of a modified white hole. We obtain new possible mathematical connections with some sectors of Number Theory, Ramanujan Recurring Numbers, DN Constant and String Theory, that enable us to extract the quantum geometrical properties of these thermodynamic equations and the implication to the quantum vacuum spacetime geometry of our early universe as they act as the constraints to the nature of quantum gravity of the universe. 展开更多
关键词 number theory Ramanujan Recurring numbers DN Constant String theory Loop Quantum Gravity Matter Creation Enthalpy Energy Density Thermodynamic Volume ENTHALPY
下载PDF
Collatz Iterative Trajectories of All Odd Numbers Attain Bounded Values
5
作者 Jinqing Zhang Xintong Zhang 《Journal of Applied Mathematics and Physics》 2023年第10期3030-3041,共12页
The aim of this paper is to study the 3x + 1 problem based on the Collatz iterative formula. It can be seen from the iterative formula that the necessary condition for the Collatz iteration convergence is that its slo... The aim of this paper is to study the 3x + 1 problem based on the Collatz iterative formula. It can be seen from the iterative formula that the necessary condition for the Collatz iteration convergence is that its slope being less than 1. An odd number N that satisfies the condition of a slope less than 1 after n<sup>th</sup> Collatz iterations is defined as an n-step odd number. Through statistical analysis, it is found that after n<sup>th</sup> Collatz iterations, the iterative value of any n-step odd number N that is greater than 1 is less than N, which proves that the slope less than 1 is a sufficient and necessary condition for Collatz iteration convergence. 展开更多
关键词 number theory 3x + 1 Problem Collatz Conjecture Syracuse Problem Statistical Analysis
下载PDF
The Genesis of Prime Numbers—Revealing the Underlying Periodicity of Prime Numbers 被引量:1
6
作者 Xin Wang 《Advances in Pure Mathematics》 2021年第1期12-18,共7页
Prime numbers are the integers that cannot be divided exactly by another integer other than one and itself. Prime numbers are notoriously disobedient to rules: they seem to be randomly distributed among natural number... Prime numbers are the integers that cannot be divided exactly by another integer other than one and itself. Prime numbers are notoriously disobedient to rules: they seem to be randomly distributed among natural numbers with no laws except that of chance. Questions about prime numbers have been perplexing mathematicians over centuries. How to efficiently predict greater prime numbers has been a great challenge for many. Most of the previous studies focus on how many prime numbers there are in certain ranges or patterns of the first or last digits of prime numbers. Honestly, although these patterns are true, they help little with accurately predicting new prime numbers, as a deviation at any digit is enough to annihilate the primality of a number. The author demonstrates the periodicity and inter-relationship underlying all prime numbers that makes the occurrence of all prime numbers predictable. This knowledge helps to fish all prime numbers within one net and will help to speed up the related research. 展开更多
关键词 Prime number GENESIS PERIODICITY RULE Prediction number theory Evolution
下载PDF
Shift, the Law of the Invention of Zero
7
作者 Emmanuel Cadier Anaxhaoza 《Advances in Pure Mathematics》 2023年第5期237-249,共13页
After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first... After posing the axiom of linear algebra, the author develops how this allows the calculation of arbitrary base powers, which provides an instantaneous calculation of powers in a particular base such as base ten;first of all by developing the any base calculation of these powers, then by calculating triangles following the example of the “arithmetical” triangle of Pascal and showing how the formula of the binomial of Newton is driving the construction. The author also develops the consequences of the axiom of linear algebra for the decimal writing of numbers and the result that this provides for the calculation of infinite sums of the inverse of integers to successive powers. Then the implications of these new forms of calculation on calculator technologies, with in particular the storage of triangles which calculate powers in any base and the use of a multiplication table in a very large canonical base are discussed. 展开更多
关键词 AXIOM Axiom of Linear Algebra {ALA} Any Base Calculation ABC theory number’s Origin number theory Newton’s Binomial Formula Pascal’s Triangle Base Z Canonical Bases Calculator Revolution Infinite Sums of Inverse of Integer to the Successive Powers Information Completion theory Cipher Factorizations That Are numbers Infinite numbers That Are Infinite Sums
下载PDF
The 3x + 1 Conjecture, a Direct Path
8
作者 Salvador Bermúdez Gómez 《American Journal of Computational Mathematics》 2023年第2期350-355,共6页
The 3x + 1 problem, is a math problem that has baffled mathematicians for over 50 years. It’s easy to explain: take any positive number, if it’s even, divide it by 2;if it’s odd, multiply it by 3 and add 1. Repeat ... The 3x + 1 problem, is a math problem that has baffled mathematicians for over 50 years. It’s easy to explain: take any positive number, if it’s even, divide it by 2;if it’s odd, multiply it by 3 and add 1. Repeat this process with the resulting number, and the conjecture says that you will eventually reach 1. Despite testing all starting values up to an enormous number, no one has proved the conjecture is true for all possible starting values. The problem’s importance lies in its simplicity and difficulty, inspiring new ideas in mathematics and advancing fields like number theory, dynamical systems, and computer science. Proving or disproving the conjecture would revolutionize our understanding of math. The presence of infinite sequences is a matter of question. To investigate and solve this conjecture, we are utilizing a novel approach involving the fields of number theory and computer science. 展开更多
关键词 3x + 1 Collatz Solved Computer Science number theory New Algo-rithm
下载PDF
The Prime Sequence: Demonstrably Highly Organized While Also Opaque and Incomputable-With Remarks on Riemann’s Hypothesis, Partition, Goldbach’s Conjecture, Euclid on Primes, Euclid’s Fifth Postulate, Wilson’s Theorem along with Lagrange’s Proof of It and Pascal’s Triangle, and Rational Human Intelligence
9
作者 Leo Depuydt 《Advances in Pure Mathematics》 2014年第8期400-466,共67页
The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The ma... The main design of this paper is to determine once and for all the true nature and status of the sequence of the prime numbers, or primes—that is, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and so on. The main conclusion revolves entirely around two points. First, on the one hand, it is shown that the prime sequence exhibits an extremely high level of organization. But second, on the other hand, it is also shown that the clearly detectable organization of the primes is ultimately beyond human comprehension. This conclusion runs radically counter and opposite—in regard to both points—to what may well be the default view held widely, if not universally, in current theoretical mathematics about the prime sequence, namely the following. First, on the one hand, the prime sequence is deemed by all appearance to be entirely random, not organized at all. Second, on the other hand, all hope has not been abandoned that the sequence may perhaps at some point be grasped by human cognition, even if no progress at all has been made in this regard. Current mathematical research seems to be entirely predicated on keeping this hope alive. In the present paper, it is proposed that there is no reason to hope, as it were. According to this point of view, theoretical mathematics needs to take a drastic 180-degree turn. The manner of demonstration that will be used is direct and empirical. Two key observations are adduced showing, 1), how the prime sequence is highly organized and, 2), how this organization transcends human intelligence because it plays out in the dimension of infinity and in relation to π. The present paper is part of a larger project whose design it is to present a complete and final mathematical and physical theory of rational human intelligence. Nothing seems more self-evident than that rational human intelligence is subject to absolute limitations. The brain is a material and physically finite tool. Everyone will therefore readily agree that, as far as reasoning is concerned, there are things that the brain can do and things that it cannot do. The search is therefore for the line that separates the two, or the limits beyond which rational human intelligence cannot go. It is proposed that the structure of the prime sequence lies beyond those limits. The contemplation of the prime sequence teaches us something deeply fundamental about the human condition. It is part of the quest to Know Thyself. 展开更多
关键词 Absolute Limitations of Rational Human Intelligence Analytic number theory Aristotle’s Fundamental Axiom of Thought Euclid’s Fifth Postulate Euclid on numbers Euclid on Primes Euclid’s Proof of the Primes’ Infinitude Euler’s Infinite Prime Product Euler’s Infinite Prime Product Equation Euler’s Product Formula Godel’s Incompleteness Theorem Goldbach’s Conjecture Lagrange’s Proof of Wilson’s Theorem number theory Partition Partition numbers Prime numbers (Primes) Prime Sequence (Sequence of the Prime numbers) Rational Human Intelligence Rational Thought and Language Riemann’s Hypothesis Riemann’s Zeta Function Wilson’s Theorem
下载PDF
Golden Quartic Polynomial and Moebius-Ball Electron 被引量:5
10
作者 Hans Hermann Otto 《Journal of Applied Mathematics and Physics》 2022年第5期1785-1812,共28页
A symmetrical quartic polynomial, named golden one, can be connected to coefficients of the icosahedron equation as well as to the gyromagnetic correction of the electron and to number 137. This number is not a mystic... A symmetrical quartic polynomial, named golden one, can be connected to coefficients of the icosahedron equation as well as to the gyromagnetic correction of the electron and to number 137. This number is not a mystic one, but is connected with the inverse of Sommerfeld’s fine-structure constant and this way again connected with the electron. From number-theoretical realities, including the reciprocity relation of the golden ratio as effective pre-calculator of nature’s creativeness, a proposed closeness to the icosahedron may point towards the structure of the electron, thought off as a single-strand compacted helically self-confined charged elemantary particle of less spherical but assumed blunted icosahedral shape generated from a high energy double-helix photon. We constructed a chiral Moebius “ball” from a 13 times 180&#730;twisted double helix strand, where the turning points of 12 generated slings were arranged towards the vertices of a regular icosahedron, belonging to the non-centrosymmetric rotation group I532. Mathematically put, we convert the helical motion of an energy quantum into a stationary motion on a Moebius stripe structure. The radius of the ball is about the Compton radius. This chiral closed circuit Moebius ball motion profile can be tentatively thought off as the dominant quantum vortex structure of the electron, and the model may be named CEWMB (Charged Electromagnetic Wave Moebius Ball). Also the gyromagnetic factor of the electron (g<sub>e</sub> = 2.002319) can be traced back to this special structure. However, nature’s energy infinity principle would suggest a superposition with additional less dominant (secondary) structures, governed also by the golden mean. A suggestion about the possible structure of delocalized hole carriers in the superconducting state is given. 展开更多
关键词 Golden Qartic Polynomial number theory Icosahedron Equation Golden Mean Fifth Power of the Golden Mean Moebius Ball Electron Structure CHIRALITY Fine-Structure Constant Fibonacci number 13 Lucas numbers SUPERCONDUCTIVITY
下载PDF
A New Method to Study Goldbach Conjecture 被引量:2
11
作者 Ke Li 《Applied Mathematics》 2022年第1期68-76,共9页
This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conj... This paper does not claim to prove the Goldbach conjecture, but it does provide a new way of proof (LiKe sequence);And in detailed introduces the proof process of this method: by indirect transformation, Goldbach conjecture is transformed to prove that, for any odd prime sequence (3, 5, 7, <span style="font-size:12px;white-space:nowrap;">&#8230;</span>, <em>P<sub>n</sub></em>), there must have no LiKe sequence when the terms must be less than 3 <span style="font-size:12px;white-space:nowrap;">&#215;</span> <em>P<sub>n</sub></em>. This method only studies prime numbers and corresponding composite numbers, replaced the relationship between even numbers and indeterminate prime numbers. In order to illustrate the importance of the idea of transforming the addition problem into the multiplication problem, we take the twin prime conjecture as an example and know there must exist twin primes in the interval [3<em>P<sub>n</sub></em>, <span><em>P</em></span><sup>2</sup><sub style="margin-left:-8px;"><em>n</em></sub>]. This idea is very important for the study of Goldbach conjecture and twin prime conjecture. It’s worth further study. 展开更多
关键词 Goldbach Conjecture LiKe Sequence Twin Prime Conjecture number theory
下载PDF
Beyond a Quartic Polynomial Modeling of the DNA Double-Helix Genetic Code 被引量:3
12
作者 Hans Hermann Otto 《Journal of Applied Mathematics and Physics》 2021年第10期2558-2577,共20页
By combination of finite number theory and quantum information, the complete quantum information in the <em>DNA</em> genetic code has been made likely by <em>Planat et al</em>. (2020). In the p... By combination of finite number theory and quantum information, the complete quantum information in the <em>DNA</em> genetic code has been made likely by <em>Planat et al</em>. (2020). In the present contribution a varied quartic polynomial contrasting the polynomial used by <em>Planat et al</em>. is proposed that considered apart from the golden mean also the fifth power of this dominant number of nature to adapt the code information. The suggested polynomial is denoted as <em>g</em>(<em>x</em>) = <em>x</em><sup>4</sup> - <em>x</em><sup>3</sup> - (4 - <em><i style="white-space:normal;">&#981;</i></em><sup>2</sup> )<em>x</em><sup>2</sup> + (4 – <i>&#981;</i><sup>2</sup>)x + 1, where <img src="Edit_40efe764-d690-499f-8424-129f9ca46f78.bmp" alt="" /> is the golden mean. Its roots are changed to more golden mean based ones in comparison to the <em>Planat</em> polynomial. The new coefficients 4 – <em>&#981;</em><sup>2</sup> instead of 4 would implement the fifth power of the golden mean indirectly applying <img src="Edit_5b44b644-3f59-4fad-a586-ec5345ba6be4.bmp" alt="" />. As an outlook, it should be emphesized that the connection between genetic code and resonance code of the <em>DNA</em> may lead us to a full understanding of how nature stores and processes compacted information and what indeed is consciousness linking everything with each other suggestedly mediated by all-pervasive dark constituents of matter respectively energy. The number-theoretical approach to <em>DNA</em> coding leads to the question about the helical structure of the electron. 展开更多
关键词 DNA Genetic Code DNA Resonance Code Qartic Polymial Golden Mean Silver Mean Fifth Power of the Golden Mean Fiboacci number 13 α-Helix Icosahedron Equation number theory Quantum Computation Consciousness Dark Energy Electron’s Structure
下载PDF
From Witten’s 462 Supercharges of 5-D Branes in Eleven Dimensions to the 95.5 Percent Cosmic Dark Energy Density behind the Accelerated Expansion of the Universe 被引量:1
13
作者 Mohamed S. El Naschie 《Journal of Quantum Information Science》 2016年第2期57-61,共5页
The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show th... The measured 95.5% dark energy density of the cosmos presumed to be behind the observed accelerated cosmic expansion is determined theoretically based upon Witten’s five branes in eleven dimensions theory. We show that the said dark energy density is easily found from the ratio of the 462 states of the five dimensional Branes to the total number of states, namely 528 minus the 44 degrees of freedom of the vacuum, i.e. , almost exactly as found in WMAP and Type 1a supernova measurements. 展开更多
关键词 number theory Witten Branes Dark Energy Superstrings Cosmic Expansion Type 1a Supernova E-INFINITY Exceptional Lie Symmetry Groups
下载PDF
Clarifications for the Published Article: “A Solution to the Famous Twin’s Problem” in the APM of SCIRP at 24 September of 2019
14
作者 Prodromos Char. Papadopoulos 《Advances in Pure Mathematics》 2020年第9期547-587,共41页
This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only o... This article B is almost autonomous because it can be read independently from the first published article A [1] using only a few parts of the article A. Be-low are given instructions so to need the reader study only on few places of the article A. Also, in the part A of Introduction, here, you will find simple and useful definitions and the strategy we are going to follow as well useful new theorems (also and in Section 5, which have been produced in this solution). So the published solution of twin’s problem can now be easily understood. The inequalities (4.17), (4.18) of Article A are proved here in Section 4 by a new clear method, without the possible ambiguity of the text between the relations (4.14), (4.16) of the Article A. Also we complete the proof for the twin’s distri-bution which we use. At the end here are presented the Conclusions, the No-menclatures and the numerical control of the proof, which is probably useful as well in coding methods. For a general and convincing picture is sufficient, a study from the beginning of this article B until the end of the part A of the In-troduction here as well a general glance on the Section 5 and on the Conclu-sions below. 展开更多
关键词 Twin Problem Twin’s Problem Unsolved Mathematical Problems Prime number Problems Millennium Problems Riemann Hypothesis Riemann’s Hypothesis number theory Information theory Probabilities Statistics
下载PDF
Riemann Hypothesis, Catholic Information and Potential of Events with New Techniques for Financial and Other Applications
15
作者 Prodromos Char. Papadopoulos 《Advances in Pure Mathematics》 2021年第5期524-572,共49页
In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic... In this research we are going to define two new concepts: a) “The Potential of Events” (EP) and b) “The Catholic Information” (CI). The term CI derives from the ancient Greek language and declares all the Catholic (general) Logical Propositions (<img src="Edit_5f13a4a5-abc6-4bc5-9e4c-4ff981627b2a.png" width="33" height="21" alt="" />) which will true for every element of a set A. We will study the Riemann Hypothesis in two stages: a) By using the EP we will prove that the distribution of events e (even) and o (odd) of Square Free Numbers (SFN) on the axis Ax(N) of naturals is Heads-Tails (H-T) type. b) By using the CI we will explain the way that the distribution of prime numbers can be correlated with the non-trivial zeros of the function <em>ζ</em>(<em>s</em>) of Riemann. The Introduction and the Chapter 2 are necessary for understanding the solution. In the Chapter 3 we will present a simple method of forecasting in many very useful applications (e.g. financial, technological, medical, social, etc) developing a generalization of this new, proven here, theory which we finally apply to the solution of RH. The following Introduction as well the Results with the Discussion at the end shed light about the possibility of the proof of all the above. The article consists of 9 chapters that are numbered by 1, 2, …, 9. 展开更多
关键词 Twin Problem Twin’s Problem Unsolved Mathematical Problems Prime number Problems Millennium Problems Riemann Hypothesis Riemann’s Hypothesis number theory Information theory Probabilities Statistics Management Financial Applications Arithmetical Analysis Optimization theory Stock Exchange Mathematics Approximation Methods Manifolds Economical Mathematics Random Variables Space of Events Strategy Games Probability Density Stock Market Technical Analysis Forecasting
下载PDF
Anti Aristotle—The Division of Zero by Zero
16
作者 Jan Pavo Barukčić Ilija Barukčić 《Journal of Applied Mathematics and Physics》 2016年第4期749-761,共13页
Today, the division of zero by zero (0/0) is a concept in philosophy, mathematics and physics without a definite solution. On this view, we are left with an inadequate and unsatisfactory situation that we are not allo... Today, the division of zero by zero (0/0) is a concept in philosophy, mathematics and physics without a definite solution. On this view, we are left with an inadequate and unsatisfactory situation that we are not allowed to divide zero by zero while the need to divide zero by zero (i.e. divide a tensor component which is equal to zero by another tensor component which is equal to zero) is great. A solution of the philosophically, logically, mathematically and physically far reaching problem of the division of zero by zero (0/0) is still not in sight. The aim of this contribution is to solve the problem of the division of zero by zero (0/0) while relying on Einstein’s theory of special relativity. In last consequence, Einstein’s theory of special relativity demands the division of zero by zero. Due to Einstein’s theory of special relativity, it is (0/0) = 1. As we will see, either we must accept the division of zero by zero as possible and defined, or we must abandon Einstein’s theory of special relativity as refuted. 展开更多
关键词 number theory Quantum theory Relativity theory Unified Field theory CAUSALITY
下载PDF
On the Change Rule of 3x + 1 Problem
17
作者 Ke Li 《Journal of Applied Mathematics and Physics》 2022年第3期850-864,共15页
This article introduces a change rule of 3x + 1 problem (Collatz conjecture), it’s named LiKe’s Rule. It’s a map of 3x + 1 problem, and details the path of each step of the change: For any positive integer, change ... This article introduces a change rule of 3x + 1 problem (Collatz conjecture), it’s named LiKe’s Rule. It’s a map of 3x + 1 problem, and details the path of each step of the change: For any positive integer, change by the Collatz conjecture. 1) This positive integer will change to an odd number;2) The odd number must change to a number of LiKe’s second sequence {3<sup>n</sup> – 1| n ∈ Z<sup>+</sup>};3) Then this 3<sup>n</sup> - 1 will change to a smaller 3<sup>n </sup>– 1 and gradually decrease to 8 (that is 3<sup>2</sup> - 1) then back to 1 in the end. If we can determine each step, the Collatz conjecture will be true. This is certainly more valuable than 2<sup>n</sup> (it might even explain 2<sup>n</sup>). And to illustrate the importance of this rule, introduced some important funny corollaries related to it. 展开更多
关键词 3x +1 Problem Collatz-Problem Collatz Conjecture LiKe’s Rule number theory
下载PDF
4N=Pn-Pm
18
作者 Mi Zhou 《数学计算(中英文版)》 2020年第1期1-2,共2页
In his book unsolved problems in number theory,Canadian guy proposed a conjecture that all even Numbers are the difference between two prime Numbers.Based on the calculation of elementary number theory,this article co... In his book unsolved problems in number theory,Canadian guy proposed a conjecture that all even Numbers are the difference between two prime Numbers.Based on the calculation of elementary number theory,this article concludes that this conjecture is true and concludes that All integral multiples of 4 are the difference between two primes. 展开更多
关键词 number theory COMPUTATION Prime numbers
下载PDF
Comparison of 4n+1 and 4n-1 Primes
19
作者 Mi Zhou 《数学计算(中英文版)》 2020年第1期13-14,共2页
The famous mathematician Littlewood proposed an unsolved conjecture in number theory,which has two descriptions:1.Before any number in front of K,the number of prime numbers in the form of 4n+1 i s no more than 4n-1;2... The famous mathematician Littlewood proposed an unsolved conjecture in number theory,which has two descriptions:1.Before any number in front of K,the number of prime numbers in the form of 4n+1 i s no more than 4n-1;2.After this number k,the number of prime numbers in the form of 4n-1 is no more than the number of primes in the form of 4n+1.This paper proves that there is a conclusion about this conjecture:1.There is a critical point K,and the number of 4n+1 primes before any natural number in front of k is not more than 4n-1.2.There is no critical point,the number of 4n+1 primes is never more than 4n-1 primes.One of the two conclusions must be true. 展开更多
关键词 number theory p=4n+1 p=4n-1
下载PDF
Zero Divided by Zero Equals One
20
作者 Ilija Barukcic 《Journal of Applied Mathematics and Physics》 2018年第4期836-853,共18页
Objective: Accumulating evidence indicates that zero divided by zero is equal to one. Still it is not clear what number theory or algebra is saying about this. Methods: To explore the relationship between the problem ... Objective: Accumulating evidence indicates that zero divided by zero is equal to one. Still it is not clear what number theory or algebra is saying about this. Methods: To explore the relationship between the problem of the division of zero by zero and number theory, a systematic approach is used while analyzing the relationship between number theory and independence. Result: The theorems developed in this publication support the thesis that zero divided by zero is equal to one. Furthermore, it was possible to define the law of independence under conditions of number theory and algebra. Conclusion: The findings of this study suggest that zero divided by zero equals one. 展开更多
关键词 Zero Divided by Zero number theory ALGEBRA INDEPENDENCE
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部