期刊文献+
共找到1,003篇文章
< 1 2 51 >
每页显示 20 50 100
An Introduction to Numerical Methods for the Solutions of Partial Differential Equations 被引量:1
1
作者 Manoj Kumar Garima Mishra 《Applied Mathematics》 2011年第11期1327-1338,共12页
Partial differential equations arise in formulations of problems involving functions of several variables such as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow, and elasticity, etc. The... Partial differential equations arise in formulations of problems involving functions of several variables such as the propagation of sound or heat, electrostatics, electrodynamics, fluid flow, and elasticity, etc. The present paper deals with a general introduction and classification of partial differential equations and the numerical methods available in the literature for the solution of partial differential equations. 展开更多
关键词 partial differential equations EIGENVALUE FINITE Difference METHOD FINITE Volume METHOD FINITE Element METHOD
下载PDF
Comparative Studies between Picard’s and Taylor’s Methods of Numerical Solutions of First Ordinary Order Differential Equations Arising from Real-Life Problems
2
作者 Khalid Abd Elrazig Awad Alla Elnour 《Journal of Applied Mathematics and Physics》 2024年第3期877-896,共20页
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’... To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section. 展开更多
关键词 First-Order differential equations Picard Method Taylor Series Method numerical Solutions numerical Examples MATLAB Software
下载PDF
THE NUMERICAL STABILITY OF THE BLOCK θ-METHODS FOR DELAY DIFFERENTIAL EQUATIONS 被引量:1
3
作者 田红炯 匡蛟勋 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2001年第1期1-8,共8页
This paper focuses on the numerical stability of the block θ methods adapted to differential equations with a delay argument. For the block θ methods, an interpolation procedure is introduced which leads to the nume... This paper focuses on the numerical stability of the block θ methods adapted to differential equations with a delay argument. For the block θ methods, an interpolation procedure is introduced which leads to the numerical processes that satisfy an important asymptotic stability condition related to the class of test problems y′(t)=ay(t)+by(t-τ) with a,b∈C, Re(a)<-|b| and τ>0. We prove that the block θ method is GP stable if and only if the method is A stable for ordinary differential equations. Furthermore, it is proved that the P and GP stability are equivalent for the block θ method. 展开更多
关键词 numerical stability block θ methods delay differential equations.
下载PDF
Crank-Nicolson ADI Galerkin Finite Element Methods for Two Classes of Riesz Space Fractional Partial Differential Equations 被引量:1
4
作者 An Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期917-939,共23页
In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the... In this paper,two classes of Riesz space fractional partial differential equations including space-fractional and space-time-fractional ones are considered.These two models can be regarded as the generalization of the classical wave equation in two space dimensions.Combining with the Crank-Nicolson method in temporal direction,efficient alternating direction implicit Galerkin finite element methods for solving these two fractional models are developed,respectively.The corresponding stability and convergence analysis of the numerical methods are discussed.Numerical results are provided to verify the theoretical analysis. 展开更多
关键词 Fractional partial differential equations Galerkin approximation alternating direction implicit method STABILITY CONVERGENCE
下载PDF
Modified Laguerre spectral and pseudospectral methods for nonlinear partial differential equations in multiple dimensions
5
作者 徐承龙 郭本瑜 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第3期311-331,共21页
The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are est... The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are established, which play important roles in the related numerical methods for unbounded domains. As an example, the modified Laguerre spectral and pseudospectral methods are proposed for two-dimensional Logistic equation. The stability and convergence of the suggested schemes are proved. Numerical results demonstrate the high accuracy of these approaches. 展开更多
关键词 modified Laguerre orthogonal approximation and interpolation multiple dimensions spectral and pseudospectral methods nonlinear partial differential equations
下载PDF
THE STABILITY OF LINEAR MULTISTEP METHODS FOR SYSTEMS OF DELAY DIFFERENTIAL EQUATIONS 被引量:2
6
作者 田红炯 匡蛟勋 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1995年第1期10-16,共7页
This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the... This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region. 展开更多
关键词 numerical stability linear mullistep method DELAY differential equation.
下载PDF
Fourth-Order Splitting Methods for Time-Dependant Differential Equations 被引量:2
7
作者 Jürgen Geiser 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第3期321-339,共19页
This study was suggested by previous work on the simulation of evolution equations with scale-dependent processes,e.g.,wave-propagation or heat-transfer,that are modeled by wave equations or heat equations.Here,we stu... This study was suggested by previous work on the simulation of evolution equations with scale-dependent processes,e.g.,wave-propagation or heat-transfer,that are modeled by wave equations or heat equations.Here,we study both parabolic and hyperbolic equations.We focus on ADI (alternating direction implicit) methods and LOD (locally one-dimensional) methods,which are standard splitting methods of lower order,e.g.second-order.Our aim is to develop higher-order ADI methods,which are performed by Richardson extrapolation,Crank-Nicolson methods and higher-order LOD methods,based on locally higher-order methods.We discuss the new theoretical results of the stability and consistency of the ADI methods.The main idea is to apply a higher- order time discretization and combine it with the ADI methods.We also discuss the dis- cretization and splitting methods for first-order and second-order evolution equations. The stability analysis is given for the ADI method for first-order time derivatives and for the LOD (locally one-dimensional) methods for second-order time derivatives.The higher-order methods are unconditionally stable.Some numerical experiments verify our results. 展开更多
关键词 partial differential equations operator-splitting methods evolution equations ADImethods LOD methods stability analysis higher-order methods.
下载PDF
Method of Lines for Third Order Partial Differential Equations 被引量:2
8
作者 Mustafa Kudu Ilhame Amirali 《Journal of Applied Mathematics and Physics》 2014年第2期33-36,共4页
The method of lines is applied to the boundary-value problem for third order partial differential equation. Explicit expression and order of convergence for the approximate solution are obtained.
关键词 Method of LINES partial differential Equation CONVERGENCE Error ESTIMATES
下载PDF
A lattice Boltzmann model with an amending function for simulating nonlinear partial differential equations 被引量:1
9
作者 陈林婕 马昌凤 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期148-155,共8页
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model... This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions. 展开更多
关键词 nonlinear partial differential equation lattice Boltzmann method Chapman-Enskog expansion Taylor expansion
下载PDF
Symbolic computation and exact traveling solutions for nonlinear partial differential equations 被引量:1
10
作者 吴国成 夏铁成 《Journal of Shanghai University(English Edition)》 CAS 2008年第6期481-485,共5页
In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he so... In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he solved. Especially, as applications, a compound KdV-mKdV equation and the Broer-Kaup equations are considered successfully, and many solutions including periodic solutions, triangle solutions, and rational solutions are obtained. The method can also be applied to other NPDEs. 展开更多
关键词 nonlinear partial differential equations (NPDEs) rational solution soliton solution doubly periodic solution Wu method
下载PDF
New Implementation of Legendre Polynomials for Solving Partial Differential Equations 被引量:1
11
作者 Ali Davari Abozar Ahmadi 《Applied Mathematics》 2013年第12期1647-1650,共4页
In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear... In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order linear partial differential equations. Our approach consists of reducing the problem to a set of linear equations by expanding the approximate solution in terms of shifted Legendre polynomials with unknown coefficients. The performance of presented method has been compared with other methods, namely Sinc-Galerkin, quadratic spline collocation and LiuLin method. Numerical examples show better accuracy of the proposed method. Moreover, the computation cost decreases at least by a factor of 6 in this method. 展开更多
关键词 LEGENDRE POLYNOMIALS partial differential equations COLLOCATION Method
下载PDF
Mixture of a New Integral Transform and Homotopy Perturbation Method for Solving Nonlinear Partial Differential Equations 被引量:1
12
作者 Artion Kashuri Akli Fundo Matilda Kreku 《Advances in Pure Mathematics》 2013年第3期317-323,共7页
In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomi... In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2]. 展开更多
关键词 HOMOTOPY PERTURBATION methods A NEW INTEGRAL Transform Nonlinear partial differential equations He’s POLYNOMIALS
下载PDF
Double Elzaki Transform Decomposition Method for Solving Non-Linear Partial Differential Equations 被引量:1
13
作者 Moh A. Hassan Tarig M. Elzaki 《Journal of Applied Mathematics and Physics》 2020年第8期1463-1471,共9页
In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Trans... In this paper, we discuss a new method employed to tackle non-linear partial differential equations, namely Double Elzaki Transform Decomposition Method (DETDM). This method is a combination of the Double ELzaki Transform and Adomian Decomposition Method. This technique is hereafter provided and supported with necessary illustrations, together with some attached examples. The results reveal that the new method is very efficient, simple and can be applied to other non-linear problems. 展开更多
关键词 Double Elzaki Transform Adomian Decomposition Method Non-Linear partial differential equations
下载PDF
The θ-Methods in Numerical Solution of Systems of Differential Equations with Two Delay Terms 被引量:2
14
作者 Tian Hongjiong & Kuang Jiaoxun (Department of Mathematics, Shanghai Normal University, Shanghai 200234, China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1994年第3期32-40,共9页
This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solutio... This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1. 展开更多
关键词 Delay differential equations numerical solution Θ-methods Asymptotic stability Schur polynomial.
下载PDF
A SOLVING METHOD FOR A SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS WITH AN APPLICATION TO THE BENDING PROBLEM OF A THICK PLATE
15
作者 尹益辉 陈刚 陈裕泽 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第11期1259-1265,共7页
A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is ... A theorem of solving a system of linear non-homogeneous differential equations through integrating and adding its basic solutions is put forward and proved, the mathematical role and physical nature of the theorem is interpreted briefly. As an example, the theorem is applied to solve the problem of thermo-force bending of a thick plate. 展开更多
关键词 partial differential equations integrating method thick plate thermo-force bending
下载PDF
The Stability of Runge-Kutta Methods for Systems of Delay Differential Equations
16
作者 王晓彪 刘明珠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1996年第1期1-6,共6页
TheStabilityofRunge-KuttaMethodsforSystemsofDelayDifferentialEquations¥WANGXiaobiao;LIUMingzhu(王晓彪)(刘明珠)(Dept.... TheStabilityofRunge-KuttaMethodsforSystemsofDelayDifferentialEquations¥WANGXiaobiao;LIUMingzhu(王晓彪)(刘明珠)(Dept.ofMathematics,Har... 展开更多
关键词 ss:Delay differential equations numerical solution RUNGE-KUTTA methods STABILITY
下载PDF
Numerical Solution for Fractional Partial Differential Equation with Bernstein Polynomials
17
作者 Jin-Sheng Wang Li-Qing Liu +1 位作者 Yi-Ming Chen Xiao-Hong Ke 《Journal of Electronic Science and Technology》 CAS 2014年第3期331-338,共8页
A framework to obtain numerical solution of the fractional partial differential equation using Bernstein polynomials is presented. The main characteristic behind this approach is that a fractional order operational ma... A framework to obtain numerical solution of the fractional partial differential equation using Bernstein polynomials is presented. The main characteristic behind this approach is that a fractional order operational matrix of Bernstein polynomials is derived. With the operational matrix, the equation is transformed into the products of several dependent matrixes which can also be regarded as the system of linear equations after dispersing the variable. By solving the linear equations, the numerical solutions are acquired. Only a small number of Bernstein polynomials are needed to obtain a satisfactory result. Numerical examples are provided to show that the method is computationally efficient. 展开更多
关键词 Absolute error Bernstein polynomials fractional partial differential equation numerical solution operational matrix
下载PDF
SINE TRANSFORM PRECONDITIONERS FOR SECOND-ORDER PARTIAL DIFFERENTIAL EQUATIONS
18
作者 金小庆 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1993年第1期116-123,共8页
In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the ... In this paper, we are concerned with the numerical solution of second-order partial differential equations. We analyse the use of the Sine Transform precondilioners for the solution of linear systems arising from the discretization of p.d.e. via the preconditioned conjugate gradient method. For the second-order partial differential equations with Dirichlel boundary conditions, we prove that the condition number of the preconditioned system is O(1) while the condition number of the original system is O(m 2) Here m is the number of interior gridpoints in each direction. Such condition number produces a linear convergence rale. 展开更多
关键词 SINE TRANSforM finite difference METHOD SECOND-ORDER partial differential equation condition number preconditioned conjugate gradient METHOD
下载PDF
Element-free Galerkin (EFG) method for analysis of the time-fractional partial differential equations
19
作者 Ge Hon-Xia Liu Yong-Qing Cheng Rong-Jun 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第1期46-51,共6页
The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared w... The present paper deals with the numerical solution of time-fractional partial differential equations using the element-free Galerkin (EFG) method, which is based on the moving least-square approximation. Compared with numerical methods based on meshes, the EFG method for time-fractional partial differential equations needs only scattered nodes instead of meshing the domain of the problem. It neither requires element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. In this method, the first-order time derivative is replaced by the Caputo fractional derivative of order α(0 〈 α≤ 1). The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Several numerical examples are presented and the results we obtained are in good agreement with the exact solutions. 展开更多
关键词 element-free Galerkin (EFG) method meshless method time fractional partial differential equations
下载PDF
The Multi-scale Method for Solving Nonlinear Time Space Fractional Partial Differential Equations
20
作者 Hossein Aminikhah Mahdieh Tahmasebi Mahmoud Mohammadi Roozbahani 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期299-306,共8页
In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these fu... In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed. 展开更多
关键词 Adams FRACTIONAL METHOD B-SPLINE WAVELETS MULTI-SCALE METHOD nonlinear FRACTIONAL partial differential equations
下载PDF
上一页 1 2 51 下一页 到第
使用帮助 返回顶部