Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- me...Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- mental tool. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numeri- cally the effect of wings on the level of turbulence in the flow between two contra-rotating cylinders. We have fixed on these two cylinders eight wings uniformly distributed and we have varied the height of the wings to have six values from 2 mm to 20 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings.展开更多
Turbulence is a fundamentally interesting physical phenomenon which is of fundamental interest. Indeed, it is at the origin of several industrial applications, the control of energy in these industrial applications pa...Turbulence is a fundamentally interesting physical phenomenon which is of fundamental interest. Indeed, it is at the origin of several industrial applications, the control of energy in these industrial applications pass by the comprehension and the modelling of turbulent flows. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numerically the effect of wings on the level of turbulence in the flow between two contra-rotating discs. We have fixed on these two discs eight wings uniformly distributed and we have varied the height of the wings to have eleven values from 0 to 18 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings.展开更多
Nowadays, chemical safety has attracted considerable attention, and chemical gas leakage monitoring and source term estimation(STE) have become hot spots. However, few studies have focused on sensor layouts in scenari...Nowadays, chemical safety has attracted considerable attention, and chemical gas leakage monitoring and source term estimation(STE) have become hot spots. However, few studies have focused on sensor layouts in scenarios with multiple potential leakage sources and wind conditions, and studies on the risk information(RI) detection and prioritization order of sensors have not been performed. In this work, the monitoring area of a chemical factory is divided into multiple rectangles with a uniform mesh. The RI value of each grid node is calculated on the basis of the occurrence probability and normalized concentrations of each leakage scenario. A high RI value indicates that a sensor at a grid node has a high chance of detecting gas concentrations in different leakage scenarios. This situation is beneficial for leakage monitoring and STE. The methods of similarity redundancy detection and the maximization of sensor RI detection are applied to determine the sequence of sensor locations. This study reveals that the RI detection of the optimal sensor layout with eight sensors exceeds that of the typical layout with 12 sensors. In addition, STE with the optimized placement sequence of the sensor layout is numerically simulated. The statistical results of each scenario with various numbers of sensors reveal that STE is affected by sensor number and scenarios(leakage locations and winds). In most scenarios, appropriate STE results can be retained under the optimal sensor layout even with four sensors. Eight or more sensors are advised to improve the performance of STE in all scenarios. Moreover, the reliability of the STE results in each scenario can be known in advance with a specific number of sensors. Such information thus provides a reference for emergency rescue.展开更多
采用CFD(计算流体力学)方法分析在悬停和侧飞时直升机涵道尾桨的流场与性能。在轴对称的圆柱坐标系中,用有限容积法和S IM PLE(压力耦合方程的半隐式法)算法求解定常不可压的湍流N-S方程。在分析中,旋转的螺桨被描绘成沿螺桨桨叶展向分...采用CFD(计算流体力学)方法分析在悬停和侧飞时直升机涵道尾桨的流场与性能。在轴对称的圆柱坐标系中,用有限容积法和S IM PLE(压力耦合方程的半隐式法)算法求解定常不可压的湍流N-S方程。在分析中,旋转的螺桨被描绘成沿螺桨桨叶展向分布的、与本地流动参数相关的、时间平均的动量源项,通过在N-S方程中加入此动量源项来替代螺桨对流体的作用。计算方法还包括涵道壁的阶梯型近似,原始变量的交错网格,k-ε湍流模型和涵道壁上的壁面函数法等措施。涵道尾桨的流场分析和性能预测同实验测量数据的良好的一致性表明,这种CFD方法可以有效的分析涵道尾桨的具体设计问题。展开更多
文摘Many industries in the world take part in the pollution of the environment. This pollution often comes from the reactions of combustion. To optimize these reactions and to minimize pollution, turbulence is a funda- mental tool. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numeri- cally the effect of wings on the level of turbulence in the flow between two contra-rotating cylinders. We have fixed on these two cylinders eight wings uniformly distributed and we have varied the height of the wings to have six values from 2 mm to 20 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings.
文摘Turbulence is a fundamentally interesting physical phenomenon which is of fundamental interest. Indeed, it is at the origin of several industrial applications, the control of energy in these industrial applications pass by the comprehension and the modelling of turbulent flows. Several factors are at the origin of turbulence in the complex flows, among these factors, we can quote the effect of wings in the rotating flows. The interest of this work is to model and to simulate numerically the effect of wings on the level of turbulence in the flow between two contra-rotating discs. We have fixed on these two discs eight wings uniformly distributed and we have varied the height of the wings to have eleven values from 0 to 18 mm by maintaining the same Reynolds number of rotation. The numerical tool is based on a statistical model in a point using the closing of the second order of the transport equations of the Reynolds stresses (Reynolds Stress Model: RSM). We have modelled wings effect on the flow by a source term added to the equation tangential speed. The results of the numerical simulation showed that all the average and fluctuating variables are affected the value of the kinetic energy of turbulence as those of Reynolds stresses increase with the height of the wings.
基金supported by National Natural Science Foundation of China (61988101)National Natural Science Fund for Distinguished Young Scholars (61725301)Fundamental Research Funds for the Central Universities。
文摘Nowadays, chemical safety has attracted considerable attention, and chemical gas leakage monitoring and source term estimation(STE) have become hot spots. However, few studies have focused on sensor layouts in scenarios with multiple potential leakage sources and wind conditions, and studies on the risk information(RI) detection and prioritization order of sensors have not been performed. In this work, the monitoring area of a chemical factory is divided into multiple rectangles with a uniform mesh. The RI value of each grid node is calculated on the basis of the occurrence probability and normalized concentrations of each leakage scenario. A high RI value indicates that a sensor at a grid node has a high chance of detecting gas concentrations in different leakage scenarios. This situation is beneficial for leakage monitoring and STE. The methods of similarity redundancy detection and the maximization of sensor RI detection are applied to determine the sequence of sensor locations. This study reveals that the RI detection of the optimal sensor layout with eight sensors exceeds that of the typical layout with 12 sensors. In addition, STE with the optimized placement sequence of the sensor layout is numerically simulated. The statistical results of each scenario with various numbers of sensors reveal that STE is affected by sensor number and scenarios(leakage locations and winds). In most scenarios, appropriate STE results can be retained under the optimal sensor layout even with four sensors. Eight or more sensors are advised to improve the performance of STE in all scenarios. Moreover, the reliability of the STE results in each scenario can be known in advance with a specific number of sensors. Such information thus provides a reference for emergency rescue.
文摘采用CFD(计算流体力学)方法分析在悬停和侧飞时直升机涵道尾桨的流场与性能。在轴对称的圆柱坐标系中,用有限容积法和S IM PLE(压力耦合方程的半隐式法)算法求解定常不可压的湍流N-S方程。在分析中,旋转的螺桨被描绘成沿螺桨桨叶展向分布的、与本地流动参数相关的、时间平均的动量源项,通过在N-S方程中加入此动量源项来替代螺桨对流体的作用。计算方法还包括涵道壁的阶梯型近似,原始变量的交错网格,k-ε湍流模型和涵道壁上的壁面函数法等措施。涵道尾桨的流场分析和性能预测同实验测量数据的良好的一致性表明,这种CFD方法可以有效的分析涵道尾桨的具体设计问题。