Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale...Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.展开更多
An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ...An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.展开更多
As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely use...As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely used approaches for sensitivity analysis are based on time-consuming numerical methods, such as finite difference methods. This paper presents a semi-analytical method for calculation of the sensitivity of the stability boundary in milling. After transforming the delay-differential equation with time-periodic coefficients governing the dynamic milling process into the integral form, the Floquet transition matrix is constructed by using the numerical integration method. Then, the analytical expressions of derivatives of the Floquet transition matrix with respect to the machining parameters are obtained. Thereafter, the classical analytical expression of the sensitivity of matrix eigenvalues is employed to calculate the sensitivity of the stability lobe diagram. The two-degree-of-freedom milling example illustrates the accuracy and efficiency of the proposed method. Compared with the existing methods, the unique merit of the proposed method is that it can be used for analytically computing the sensitivity of the stability boundary in milling, without employing any finite difference methods. Therefore, the high accuracy and high efficiency are both achieved. The proposed method can serve as an effective tool for machining parameter optimization and uncertainty analysis in high-speed milling.展开更多
An edge wave is a kind of surface gravity wave basically travelling along a shoaling beach. Based on the periodic assumption in the longshore direction, a second order ordinary differential equation is obtained for nu...An edge wave is a kind of surface gravity wave basically travelling along a shoaling beach. Based on the periodic assumption in the longshore direction, a second order ordinary differential equation is obtained for numerical simulation of the cross-shore surface elevation. Given parameters at the shoreline, a cross-shore elevation profile is obtained through integration with fourth-order Runge Kutta technique. For a compound slope, a longshore wavenumber is obtained by following a geometrical approach and solving a transcendental equation with an asymptotic method. Numerical results on uniform and compound sloping beaches with different wave periods, slope angles, modes and turning point positions are presented. Some special scenarios, which cannot be predicted by analytical models are also discussed.展开更多
Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy...Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.展开更多
A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can ...A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.展开更多
If a traditional explicit numerical integration algorithm is used to solve motion equation in the finite element simulation of wave motion, the time-step used by numerical integration is the smallest time-step restric...If a traditional explicit numerical integration algorithm is used to solve motion equation in the finite element simulation of wave motion, the time-step used by numerical integration is the smallest time-step restricted by the stability criterion in computational region. However, the excessively small time-step is usually unnecessary for a large portion of computational region. In this paper, a varying time-step explicit numerical integration algorithm is introduced, and its basic idea is to use different time-step restricted by the stability criterion in different computational region. Finally, the feasibility of the algorithm and its effect on calculating precision are verified by numerical test.展开更多
A new approach which is a direct integration method with integral model (DIM-IM) to solve dynamic governing equations is presented. The governing equations ore integrated into the integral equations. An algorithm with...A new approach which is a direct integration method with integral model (DIM-IM) to solve dynamic governing equations is presented. The governing equations ore integrated into the integral equations. An algorithm with explicit and predict-correct and self-starting and fourth-order accuracy to integrate the integral equations is given. Theoretical analysis and numerical examples shaw that DIM-IM described in this paper suitable for strong nonlinear and non-conservative system have higher accuracy than central difference, Houbolt, Newmark and Wilson-Theta methods.展开更多
The numerical evaluation of an integral is a frequently encountered problem in antenna analysis. A special Gauss Christoffel quadrature formula for nonclassical weight function is constructed for solving the pseu...The numerical evaluation of an integral is a frequently encountered problem in antenna analysis. A special Gauss Christoffel quadrature formula for nonclassical weight function is constructed for solving the pseudo singular integration problem arising from the analysis of thin wire antennas. High integration accuracy is obtained at comparable low computation cost by the quadrature formula constructed. This integration method can be also used in other electromagnetic integral equation problems.展开更多
The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numerical integration of an orbit on the unstable manifold of a periodic solution.This algorithm is matrix-free and emp...The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numerical integration of an orbit on the unstable manifold of a periodic solution.This algorithm is matrix-free and employs a combination of the Newton-Raphson method and the Krylov subspace method.Moreover,the algorithm adopts a multiple shooting method to address the problem of orbital instability due to long-term numerical integration.The algorithm is described through computing the extension of unstable manifold of a recomputed Nagata′s lowerbranch steady solution of plane Couette flow,which is an example of an exact coherent state that has recently been studied in subcritical transition to turbulence.展开更多
Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficienc...Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficiency, the integration step size can be adaptively controlled. Validity and effectiveness of the method are shown by application to several nonlinear dynamical systems including the Duffing system, the van der Pol system with strong stiffness, and the nonlinear Hamiltonian pendulum system.展开更多
With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and re...With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and recombination of base functions. Hammer integral formulas are the special examples of those of the paper.展开更多
A series of simulation experiments of nitrogen transportation, absorption and transformation were conducted, and the different cropping patterns of winter wheat and wastewater irrigation plans were taken into consider...A series of simulation experiments of nitrogen transportation, absorption and transformation were conducted, and the different cropping patterns of winter wheat and wastewater irrigation plans were taken into consideration. Based on the experiments, an integrated model of crop growth, roots distribution, water and nitrogen absorption by roots, water and nitrogen movement and transformation in soil-crop system by two-dimension was developed. Parameters and boundary conditions were identified and an effective computing method for optimizing watering and wastewater irrigating plans was provided.展开更多
This paper deals with the parallel information-based complexity of numerical integration on Sobolev class. We obtain tight bounds on the complexity, considered as a function of two variables simultaneously:the number ...This paper deals with the parallel information-based complexity of numerical integration on Sobolev class. We obtain tight bounds on the complexity, considered as a function of two variables simultaneously:the number of processors, the rquired precision. This result seems to be new even in serial case.展开更多
Control charts are one of the tools in statistical process control widely used for monitoring,measuring,controlling,improving the quality,and detecting problems in processes in variousfields.The average run length(ARL)...Control charts are one of the tools in statistical process control widely used for monitoring,measuring,controlling,improving the quality,and detecting problems in processes in variousfields.The average run length(ARL)can be used to determine the efficacy of a control chart.In this study,we develop a new modified exponentially weighted moving average(EWMA)control chart and derive explicit formulas for both one and the two-sided ARLs for a p-order autoregressive(AR(p))process with exponential white noise on the new modified EWMA control chart.The accuracy of the explicit formulas was compared to that of the well-known numerical integral equation(NIE)method.Although both methods were highly consistent with an absolute percentage difference of less than 0.00001%,the ARL using the explicit formulas method could be computed much more quickly.Moreover,the performance of the explicit formulas for the ARL on the new modified EWMA control chart was better than on the modified and standard EWMA control charts based on the relative mean index(RMI).In addition,to illustrate the applicability of using the proposed explicit formulas for the ARL on the new modified EWMA control chart in practice,the explicit formulas for the ARL were also applied to a process with real data from the energy and agriculturalfields.展开更多
Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple...Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.展开更多
In order to improve tracking accuracy when initial estimate is inaccurate or outliers exist,a bearings-only tracking approach called the robust range-parameterized cubature Kalman filter(RRPCKF)was proposed.Firstly,th...In order to improve tracking accuracy when initial estimate is inaccurate or outliers exist,a bearings-only tracking approach called the robust range-parameterized cubature Kalman filter(RRPCKF)was proposed.Firstly,the robust extremal rule based on the pollution distribution was introduced to the cubature Kalman filter(CKF)framework.The improved Turkey weight function was subsequently constructed to identify the outliers whose weights were reduced by establishing equivalent innovation covariance matrix in the CKF.Furthermore,the improved range-parameterize(RP)strategy which divides the filter into some weighted robust CKFs each with a different initial estimate was utilized to solve the fuzzy initial estimation problem efficiently.Simulations show that the result of the RRPCKF is more accurate and more robust whether outliers exist or not,whereas that of the conventional algorithms becomes distorted seriously when outliers appear.展开更多
Nonlinear dynamic equations can be solved accurately using a precise integration method. Some algorithms exist, but the inversion of a matrix must be calculated for these al- gorithms. If the inversion of the matrix d...Nonlinear dynamic equations can be solved accurately using a precise integration method. Some algorithms exist, but the inversion of a matrix must be calculated for these al- gorithms. If the inversion of the matrix doesn’t exist or isn’t stable, the precision and stability of the algorithms will be afected. An explicit series solution of the state equation has been pre- sented. The solution avoids calculating the inversion of a matrix and its precision can be easily controlled. In this paper, an implicit series solution of nonlinear dynamic equations is presented. The algorithm is more precise and stable than the explicit series solution and isn’t sensitive to the time-step. Finally, a numerical example is presented to demonstrate the efectiveness of the algorithm.展开更多
The aim of this paper is to achieve the radio frequency stealth(RFS) during the course of tracking by controlling the radiation energy and the interval of a radar. Firstly, we build the model of probability of interce...The aim of this paper is to achieve the radio frequency stealth(RFS) during the course of tracking by controlling the radiation energy and the interval of a radar. Firstly, we build the model of probability of interception with the once radiation during the course of tracking. Secondly, we establish the model of the cumulative probability of interception to describe the effect of RFS throughout the tracking process and obtain two solutions that are minimizing the probability of interception and the radiation times to reduce the cumulative probability of interception. Thirdly, we propose a self-adapting radiation energy control method(SARE)to minimize the probability of interception. Fourthly, we propose a self-adapting radiation interval control method(SARI) to minimize radiation times. Fifthly, combining SARE with SARI, we propose a SARE-SARI control method(SAEI) during the course of tracking.Finally, we compare SAEI with two others by simulation, and the results show the effect of RFS of SAEI is better than the other two,but we have to make a trade-off between the ability of RFS and the effect of tracking.展开更多
The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise w...The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.展开更多
基金Supported by the National Natural Science Foundation of China(52374043)Key Program of the National Natural Science Foundation of China(52234003).
文摘Based on the displacement discontinuity method and the discrete fracture unified pipe network model,a sequential iterative numerical method was used to build a fracturing-production integrated numerical model of shale gas well considering the two-phase flow of gas and water.The model accounts for the influence of natural fractures and matrix properties on the fracturing process and directly applies post-fracturing formation pressure and water saturation distribution to subsequent well shut-in and production simulation,allowing for a more accurate fracturing-production integrated simulation.The results show that the reservoir physical properties have great impacts on fracture propagation,and the reasonable prediction of formation pressure and reservoir fluid distribution after the fracturing is critical to accurately predict the gas and fluid production of the shale gas wells.Compared with the conventional method,the proposed model can more accurately simulate the water and gas production by considering the impact of fracturing on both matrix pressure and water saturation.The established model is applied to the integrated fracturing-production simulation of practical horizontal shale gas wells.The simulation results are in good agreement with the practical production data,thus verifying the accuracy of the model.
文摘An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.
基金supported by National Key Basic Research Program (973 Program, Grant No. 2011CB706804)National Natural Science Foundation of China (Grant No. 50805093)Science & Technology Commission of Shanghai Municipality, China (Grant No. 09QH1401500)
文摘As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely used approaches for sensitivity analysis are based on time-consuming numerical methods, such as finite difference methods. This paper presents a semi-analytical method for calculation of the sensitivity of the stability boundary in milling. After transforming the delay-differential equation with time-periodic coefficients governing the dynamic milling process into the integral form, the Floquet transition matrix is constructed by using the numerical integration method. Then, the analytical expressions of derivatives of the Floquet transition matrix with respect to the machining parameters are obtained. Thereafter, the classical analytical expression of the sensitivity of matrix eigenvalues is employed to calculate the sensitivity of the stability lobe diagram. The two-degree-of-freedom milling example illustrates the accuracy and efficiency of the proposed method. Compared with the existing methods, the unique merit of the proposed method is that it can be used for analytically computing the sensitivity of the stability boundary in milling, without employing any finite difference methods. Therefore, the high accuracy and high efficiency are both achieved. The proposed method can serve as an effective tool for machining parameter optimization and uncertainty analysis in high-speed milling.
基金financially supported by the National Natural Science Foundation of China(Grant No.51279055)the Fundamental Research Funds for the Central Universities(Grant No.2015B35114)the Open Fund of Jiangsu Key Laboratory of Coast Ocean Resources Development and Environment Security of Hohai University(Grant No.201506)
文摘An edge wave is a kind of surface gravity wave basically travelling along a shoaling beach. Based on the periodic assumption in the longshore direction, a second order ordinary differential equation is obtained for numerical simulation of the cross-shore surface elevation. Given parameters at the shoreline, a cross-shore elevation profile is obtained through integration with fourth-order Runge Kutta technique. For a compound slope, a longshore wavenumber is obtained by following a geometrical approach and solving a transcendental equation with an asymptotic method. Numerical results on uniform and compound sloping beaches with different wave periods, slope angles, modes and turning point positions are presented. Some special scenarios, which cannot be predicted by analytical models are also discussed.
基金National Natural Science Foundation of China under Grant Nos.51639006 and 51725901
文摘Finite element(FE) is a powerful tool and has been applied by investigators to real-time hybrid simulations(RTHSs). This study focuses on the computational efficiency, including the computational time and accuracy, of numerical integrations in solving FE numerical substructure in RTHSs. First, sparse matrix storage schemes are adopted to decrease the computational time of FE numerical substructure. In this way, the task execution time(TET) decreases such that the scale of the numerical substructure model increases. Subsequently, several commonly used explicit numerical integration algorithms, including the central difference method(CDM), the Newmark explicit method, the Chang method and the Gui-λ method, are comprehensively compared to evaluate their computational time in solving FE numerical substructure. CDM is better than the other explicit integration algorithms when the damping matrix is diagonal, while the Gui-λ(λ = 4) method is advantageous when the damping matrix is non-diagonal. Finally, the effect of time delay on the computational accuracy of RTHSs is investigated by simulating structure-foundation systems. Simulation results show that the influences of time delay on the displacement response become obvious with the mass ratio increasing, and delay compensation methods may reduce the relative error of the displacement peak value to less than 5% even under the large time-step and large time delay.
基金This project is supported by National Natural Science Foundation of China (No.59805001)
文摘A new algorithm of structure random response numerical characteristics, namedas matrix algebra algorithm of structure analysis is presented. Using the algorithm, structurerandom response numerical characteristics can easily be got by directly solving linear matrixequations rather than structure motion differential equations. Moreover, in order to solve thecorresponding linear matrix equations, the numerical integration fast algorithm is presented. Thenaccording to the results, dynamic design and life-span estimation can be done. Besides, the newalgorithm can solve non-proportion damp structure response.
基金National Natural Science Foundation of China (50178065), 973 Program (2002CB412706), National Social Com-monweal Research Foundation (2002DIB30076) and Joint Seismological Science Foundation (101066).
文摘If a traditional explicit numerical integration algorithm is used to solve motion equation in the finite element simulation of wave motion, the time-step used by numerical integration is the smallest time-step restricted by the stability criterion in computational region. However, the excessively small time-step is usually unnecessary for a large portion of computational region. In this paper, a varying time-step explicit numerical integration algorithm is introduced, and its basic idea is to use different time-step restricted by the stability criterion in different computational region. Finally, the feasibility of the algorithm and its effect on calculating precision are verified by numerical test.
文摘A new approach which is a direct integration method with integral model (DIM-IM) to solve dynamic governing equations is presented. The governing equations ore integrated into the integral equations. An algorithm with explicit and predict-correct and self-starting and fourth-order accuracy to integrate the integral equations is given. Theoretical analysis and numerical examples shaw that DIM-IM described in this paper suitable for strong nonlinear and non-conservative system have higher accuracy than central difference, Houbolt, Newmark and Wilson-Theta methods.
文摘The numerical evaluation of an integral is a frequently encountered problem in antenna analysis. A special Gauss Christoffel quadrature formula for nonclassical weight function is constructed for solving the pseudo singular integration problem arising from the analysis of thin wire antennas. High integration accuracy is obtained at comparable low computation cost by the quadrature formula constructed. This integration method can be also used in other electromagnetic integral equation problems.
文摘The recent result of an orbit continuation algorithm has provided a rigorous method for long-term numerical integration of an orbit on the unstable manifold of a periodic solution.This algorithm is matrix-free and employs a combination of the Newton-Raphson method and the Krylov subspace method.Moreover,the algorithm adopts a multiple shooting method to address the problem of orbital instability due to long-term numerical integration.The algorithm is described through computing the extension of unstable manifold of a recomputed Nagata′s lowerbranch steady solution of plane Couette flow,which is an example of an exact coherent state that has recently been studied in subcritical transition to turbulence.
基金the National Natural Science Foundation of China (No. 10632030 and10572119)the Fundamental Research Foundation of NPUthe Scientific and Technological Innovation Foundation for teachers of NPU
文摘Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group, an efficient numerical method is proposed for nonlinear dynamical systems. To improve computational efficiency, the integration step size can be adaptively controlled. Validity and effectiveness of the method are shown by application to several nonlinear dynamical systems including the Duffing system, the van der Pol system with strong stiffness, and the nonlinear Hamiltonian pendulum system.
文摘With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and recombination of base functions. Hammer integral formulas are the special examples of those of the paper.
文摘A series of simulation experiments of nitrogen transportation, absorption and transformation were conducted, and the different cropping patterns of winter wheat and wastewater irrigation plans were taken into consideration. Based on the experiments, an integrated model of crop growth, roots distribution, water and nitrogen absorption by roots, water and nitrogen movement and transformation in soil-crop system by two-dimension was developed. Parameters and boundary conditions were identified and an effective computing method for optimizing watering and wastewater irrigating plans was provided.
基金this work was supported by china State Major Key Project for Basic Researchers
文摘This paper deals with the parallel information-based complexity of numerical integration on Sobolev class. We obtain tight bounds on the complexity, considered as a function of two variables simultaneously:the number of processors, the rquired precision. This result seems to be new even in serial case.
基金Thailand Science Research and Innovation Fund,and King Mongkut’s University of Technology North Bangkok Contract no.KMUTNB-FF-65–45.
文摘Control charts are one of the tools in statistical process control widely used for monitoring,measuring,controlling,improving the quality,and detecting problems in processes in variousfields.The average run length(ARL)can be used to determine the efficacy of a control chart.In this study,we develop a new modified exponentially weighted moving average(EWMA)control chart and derive explicit formulas for both one and the two-sided ARLs for a p-order autoregressive(AR(p))process with exponential white noise on the new modified EWMA control chart.The accuracy of the explicit formulas was compared to that of the well-known numerical integral equation(NIE)method.Although both methods were highly consistent with an absolute percentage difference of less than 0.00001%,the ARL using the explicit formulas method could be computed much more quickly.Moreover,the performance of the explicit formulas for the ARL on the new modified EWMA control chart was better than on the modified and standard EWMA control charts based on the relative mean index(RMI).In addition,to illustrate the applicability of using the proposed explicit formulas for the ARL on the new modified EWMA control chart in practice,the explicit formulas for the ARL were also applied to a process with real data from the energy and agriculturalfields.
文摘Predictive Emission Monitoring Systems (PEMS) offer a cost-effective and environmentally friendly alternative to Continuous Emission Monitoring Systems (CEMS) for monitoring pollution from industrial sources. Multiple regression is one of the fundamental statistical techniques to describe the relationship between dependent and independent variables. This model can be effectively used to develop a PEMS, to estimate the amount of pollution emitted by industrial sources, where the fuel composition and other process-related parameters are available. It often makes them sufficient to predict the emission discharge with acceptable accuracy. In cases where PEMS are accepted as an alternative method to CEMS, which use gas analyzers, they can provide cost savings and substantial benefits for ongoing system support and maintenance. The described mathematical concept is based on the matrix algebra representation in multiple regression involving multiple precision arithmetic techniques. Challenging numerical examples for statistical big data analysis, are investigated. Numerical examples illustrate computational accuracy and efficiency of statistical analysis due to increasing the precision level. The programming language C++ is used for mathematical model implementation. The data for research and development, including the dependent fuel and independent NOx emissions data, were obtained from CEMS software installed on a petrochemical plant.
基金Projects(51377172,51577191) supported by the National Natural Science Foundation of China
文摘In order to improve tracking accuracy when initial estimate is inaccurate or outliers exist,a bearings-only tracking approach called the robust range-parameterized cubature Kalman filter(RRPCKF)was proposed.Firstly,the robust extremal rule based on the pollution distribution was introduced to the cubature Kalman filter(CKF)framework.The improved Turkey weight function was subsequently constructed to identify the outliers whose weights were reduced by establishing equivalent innovation covariance matrix in the CKF.Furthermore,the improved range-parameterize(RP)strategy which divides the filter into some weighted robust CKFs each with a different initial estimate was utilized to solve the fuzzy initial estimation problem efficiently.Simulations show that the result of the RRPCKF is more accurate and more robust whether outliers exist or not,whereas that of the conventional algorithms becomes distorted seriously when outliers appear.
基金Project supported by the National Natural Science Foundation of China(Nos.60273048and60174023).
文摘Nonlinear dynamic equations can be solved accurately using a precise integration method. Some algorithms exist, but the inversion of a matrix must be calculated for these al- gorithms. If the inversion of the matrix doesn’t exist or isn’t stable, the precision and stability of the algorithms will be afected. An explicit series solution of the state equation has been pre- sented. The solution avoids calculating the inversion of a matrix and its precision can be easily controlled. In this paper, an implicit series solution of nonlinear dynamic equations is presented. The algorithm is more precise and stable than the explicit series solution and isn’t sensitive to the time-step. Finally, a numerical example is presented to demonstrate the efectiveness of the algorithm.
基金supported by the National Natural Science Foundation of China(61472441)
文摘The aim of this paper is to achieve the radio frequency stealth(RFS) during the course of tracking by controlling the radiation energy and the interval of a radar. Firstly, we build the model of probability of interception with the once radiation during the course of tracking. Secondly, we establish the model of the cumulative probability of interception to describe the effect of RFS throughout the tracking process and obtain two solutions that are minimizing the probability of interception and the radiation times to reduce the cumulative probability of interception. Thirdly, we propose a self-adapting radiation energy control method(SARE)to minimize the probability of interception. Fourthly, we propose a self-adapting radiation interval control method(SARI) to minimize radiation times. Fifthly, combining SARE with SARI, we propose a SARE-SARI control method(SAEI) during the course of tracking.Finally, we compare SAEI with two others by simulation, and the results show the effect of RFS of SAEI is better than the other two,but we have to make a trade-off between the ability of RFS and the effect of tracking.
文摘The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.