The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
Parasitic flows may occur in the numerical simulation of incompressible multiphase flow due to errors in the calculation of surface tension terms, specifically for the curvature and unit normal vector. An improved met...Parasitic flows may occur in the numerical simulation of incompressible multiphase flow due to errors in the calculation of surface tension terms, specifically for the curvature and unit normal vector. An improved method for calculating the surface tension based on the level set approach is proposed, in which the contribution of not only the center node but also the rest area of a control volume to the calculation of surface tension is considered in a balanced manner. The weighted integration method (WIM) is more consistent with the concept of a banded interface in the level set method. It is applied to the temporal evolution of a two-dimensional neutrally buoyant liquid drop and a buoyancy driven deformable bubble in an immiscible fluid for the validation of WIM. The results show that the parasitic flows are evidently suppressed by the weighted integration method. The weight factors for WIM in 3-D cases are also suggested.展开更多
Parasitic flows may occur in the numerical simulation of incompressible multiphase flow due to errors in the calculation of surface tension terms, specifically for the curvature and unit normal vector. An improved met...Parasitic flows may occur in the numerical simulation of incompressible multiphase flow due to errors in the calculation of surface tension terms, specifically for the curvature and unit normal vector. An improved method for calculating the surface tension based on the level set approach is proposed, in which the contribution of not only the center node but also the rest area of a control volume to the calculation of surface tension is considered in a balanced manner. The weighted integration method (WIM) is more consistent with the concept of a banded in- terface in the level set method. It is applied to the temporal evolution of a two-dimensional neutrally buoyant liquid drop and a buoyancy driven deformable bubble in an immiscible fluid for the validation of WIM. The results show that the parasitic flows are evidently suppressed by the weighted integration method. The weight factors for WIM in 3-D cases are also suggested.展开更多
A numerical solution of the weight function for a two-electrode electromagnetic flowmeter was proposed. The solution was obtained by using the finite element method based on the basic equation of a traditional two-ele...A numerical solution of the weight function for a two-electrode electromagnetic flowmeter was proposed. The solution was obtained by using the finite element method based on the basic equation of a traditional two-electrode electromagnetic flowmeter. The two-dimensional distribution of the weight function of the electromagnetic flowmeter obtained was verified by the analytical solution. Three-dimensional distribution of the weight function was also presented in the paper. It can be employed to analyze the sensitivity and linearity of the electromagnetic flowmeter with non-uniform magnetic field, and even to assist the design of the excitation coil pair.展开更多
With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and re...With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and recombination of base functions. Hammer integral formulas are the special examples of those of the paper.展开更多
Single-pulse chaos are studied for a functionally graded materials rectangular plate. By means of the global perturbation method, explicit conditions for the existence of a SiZnikov-type homoclinic orbit are obtained ...Single-pulse chaos are studied for a functionally graded materials rectangular plate. By means of the global perturbation method, explicit conditions for the existence of a SiZnikov-type homoclinic orbit are obtained for this sys- tem, which suggests that chaos are likely to take place. Then, numerical simulations are given to test the analytical predic- tions. And from our analysis, when the chaotic motion oc- curs, there are a quasi-period motion in a two-dimensional subspace and chaos in another two-dimensional supplemen- tary subspace.展开更多
An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ...An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.展开更多
Assuming the material properties varying with an exponential law both in the thick- ness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using ...Assuming the material properties varying with an exponential law both in the thick- ness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical nu- merical method is with great advantage in the computational efficiency. Moreover, study on ax- isymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.展开更多
A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to...A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to be as simple as possible. An indirect radial basis function network (IRBFN) constructed by functions resulting from the indeterminate integral is used to construct the approaching virtual source functions distributed along the virtual boundaries. By using the linear superposition method, the governing equations presented in the boundaries integral equations (BIE) can be established while the fundamental solutions to the problems are introduced. The singular value decomposition (SVD) method is used to solve the governing equations since an optimal solution in the least squares sense to the system equations is available. In addition, no elements are required, and the boundary conditions can be imposed easily because of the Kronecker delta function properties of the approaching functions. Three classical 2D elasticity problems have been examined to verify the performance of the method proposed. The results show that this method has faster convergence and higher accuracy than the conventional boundary type numerical methods.展开更多
The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise w...The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.展开更多
The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.Th...The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The weight function is the mainly determining factor,so it greatly affects the accuracy of the computational results.The element-free Galerkin method(EFGM) was applied for the solution to plastic large deformation.The simulation of metal rheological forming was successfully done by programming and its results were visualized by using the plotting and data analyses software Tecplot.Then plastic strain under different stages during rheological forming and the three principal stresses at the last deformation were obtained.The example shows the feasibility of EFGM used for metal rheological forming and provides a new method for numerical simulation of rheological forming of complex parts.展开更多
In this paper we design and analyze a class of high order numerical methods to two dimensional Heaviside function integrals. Inspired by our high order numerical methods to two dimensional delta function integrals [19...In this paper we design and analyze a class of high order numerical methods to two dimensional Heaviside function integrals. Inspired by our high order numerical methods to two dimensional delta function integrals [19], the methods comprise approximating the mesh cell restrictions of the Heaviside function integral. In each mesh cell the two dimen- sional Heaviside function integral can be rewritten as a one dimensional ordinary integral with the integrand being a one dimensional Heaviside function integral which is smooth on several subsets of the integral interval. Thus the two dimensional Heaviside function inte- gral is approximated by applying standard one dimensional high order numerical quadra- tures and high order numerical methods to one dimensional Heaviside function integrals. We establish error estimates for the method which show that the method can achieve any desired accuracy by assigning the corresponding accuracy to the sub-algorithms. Numerical examples are presented showing that the in this paper achieve or exceed the expected second to fourth-order methods implemented accuracy.展开更多
This work is a continuation of the earlier article [1]. We establish new numerical methods for solving systems of Volterra integral equations with cardinal splines. The unknown functions are expressed as a linear comb...This work is a continuation of the earlier article [1]. We establish new numerical methods for solving systems of Volterra integral equations with cardinal splines. The unknown functions are expressed as a linear combination of horizontal translations of certain cardinal spline functions with small compact supports. Then a simple system of equations on the coefficients is acquired for the system of integral equations. It is relatively straight forward to solve the system of unknowns and an approximation of the original solution with high accuracy is achieved. Several cardinal splines are applied in the paper to enhance the accuracy. The sufficient condition for the existence of the inverse matrix is examined and the convergence rate is investigated. We demonstrated the value of the methods using several examples.展开更多
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
基金Supported by the National Natural Science Foundation of China (No.20490206) and the Special Funds for Major State Basic Research Program of China (973 Program, 2004CB217604).
文摘Parasitic flows may occur in the numerical simulation of incompressible multiphase flow due to errors in the calculation of surface tension terms, specifically for the curvature and unit normal vector. An improved method for calculating the surface tension based on the level set approach is proposed, in which the contribution of not only the center node but also the rest area of a control volume to the calculation of surface tension is considered in a balanced manner. The weighted integration method (WIM) is more consistent with the concept of a banded interface in the level set method. It is applied to the temporal evolution of a two-dimensional neutrally buoyant liquid drop and a buoyancy driven deformable bubble in an immiscible fluid for the validation of WIM. The results show that the parasitic flows are evidently suppressed by the weighted integration method. The weight factors for WIM in 3-D cases are also suggested.
基金the National Natural Science Foundation of China (No.20490206) the Special Funds for Major State BasicResearch Program of China (973 Program, 2004CB217604).
文摘Parasitic flows may occur in the numerical simulation of incompressible multiphase flow due to errors in the calculation of surface tension terms, specifically for the curvature and unit normal vector. An improved method for calculating the surface tension based on the level set approach is proposed, in which the contribution of not only the center node but also the rest area of a control volume to the calculation of surface tension is considered in a balanced manner. The weighted integration method (WIM) is more consistent with the concept of a banded in- terface in the level set method. It is applied to the temporal evolution of a two-dimensional neutrally buoyant liquid drop and a buoyancy driven deformable bubble in an immiscible fluid for the validation of WIM. The results show that the parasitic flows are evidently suppressed by the weighted integration method. The weight factors for WIM in 3-D cases are also suggested.
基金Supported by Chinese National Programs for High Technology Research and Development(2008AA042207)
文摘A numerical solution of the weight function for a two-electrode electromagnetic flowmeter was proposed. The solution was obtained by using the finite element method based on the basic equation of a traditional two-electrode electromagnetic flowmeter. The two-dimensional distribution of the weight function of the electromagnetic flowmeter obtained was verified by the analytical solution. Three-dimensional distribution of the weight function was also presented in the paper. It can be employed to analyze the sensitivity and linearity of the electromagnetic flowmeter with non-uniform magnetic field, and even to assist the design of the excitation coil pair.
文摘With the application of Hammer integral formulas of a continuous function on a triangular element, the numerical integral formulas of some discrete functions on the element are derived by means of decomposition and recombination of base functions. Hammer integral formulas are the special examples of those of the paper.
基金supported by the National Natural Science Foundation of China(11172125,11202095 and 11201226)Natural Science Foundation of Henan,China(2009B110009,B2008-56 and 649106)
文摘Single-pulse chaos are studied for a functionally graded materials rectangular plate. By means of the global perturbation method, explicit conditions for the existence of a SiZnikov-type homoclinic orbit are obtained for this sys- tem, which suggests that chaos are likely to take place. Then, numerical simulations are given to test the analytical predic- tions. And from our analysis, when the chaotic motion oc- curs, there are a quasi-period motion in a two-dimensional subspace and chaos in another two-dimensional supplemen- tary subspace.
文摘An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations.
基金Project supported by the National Natural Science Foundation of China (No.10432030).
文摘Assuming the material properties varying with an exponential law both in the thick- ness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical nu- merical method is with great advantage in the computational efficiency. Moreover, study on ax- isymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.
文摘A novel numerical method for eliminating the singular integral and boundary effect is processed. In the proposed method, the virtual boundaries corresponding to the numbers of the true boundary arguments are chosen to be as simple as possible. An indirect radial basis function network (IRBFN) constructed by functions resulting from the indeterminate integral is used to construct the approaching virtual source functions distributed along the virtual boundaries. By using the linear superposition method, the governing equations presented in the boundaries integral equations (BIE) can be established while the fundamental solutions to the problems are introduced. The singular value decomposition (SVD) method is used to solve the governing equations since an optimal solution in the least squares sense to the system equations is available. In addition, no elements are required, and the boundary conditions can be imposed easily because of the Kronecker delta function properties of the approaching functions. Three classical 2D elasticity problems have been examined to verify the performance of the method proposed. The results show that this method has faster convergence and higher accuracy than the conventional boundary type numerical methods.
文摘The precise integration method proposed for linear time-invariant homogeneous dynamic systems can provide accurate numerical results that approach an exact solution at integration points. However, difficulties arise when the algorithm is used for non-homogeneous dynamic systems due to the inverse matrix calculation required. In this paper, the structural dynamic equalibrium equations are converted into a special form, the inverse matrix calculation is replaced by the Crout decomposition method to solve the dynamic equilibrium equations, and the precise integration method without the inverse matrix calculation is obtained. The new algorithm enhances the present precise integration method by improving both the computational accuracy and efficiency. Two numerical examples are given to demonstrate the validity and efficiency of the proposed algorithm.
基金Key project(02103) supported by National Education Department of ChinaKey project(02A008) supported by the Education Department of Hunan Province,China+3 种基金Project(2005090) supported by Central South University of Forestry and TechnologyProject(03JJY3007) supported by the Natural Science Foundation of Hunan Province,ChinaProject supported by the Rewarding Project for Excellent PhD Thesis of Hunan Province,ChinaProject(07031B) supported by Scientific Research Fund of Central South University of Forestry and Technology
文摘The element-free method is a new numerical technique presented in recent years.It uses the moving least square(MLS) approximation as its shape function,and it is determined by the basic function and weight function.The weight function is the mainly determining factor,so it greatly affects the accuracy of the computational results.The element-free Galerkin method(EFGM) was applied for the solution to plastic large deformation.The simulation of metal rheological forming was successfully done by programming and its results were visualized by using the plotting and data analyses software Tecplot.Then plastic strain under different stages during rheological forming and the three principal stresses at the last deformation were obtained.The example shows the feasibility of EFGM used for metal rheological forming and provides a new method for numerical simulation of rheological forming of complex parts.
文摘In this paper we design and analyze a class of high order numerical methods to two dimensional Heaviside function integrals. Inspired by our high order numerical methods to two dimensional delta function integrals [19], the methods comprise approximating the mesh cell restrictions of the Heaviside function integral. In each mesh cell the two dimen- sional Heaviside function integral can be rewritten as a one dimensional ordinary integral with the integrand being a one dimensional Heaviside function integral which is smooth on several subsets of the integral interval. Thus the two dimensional Heaviside function inte- gral is approximated by applying standard one dimensional high order numerical quadra- tures and high order numerical methods to one dimensional Heaviside function integrals. We establish error estimates for the method which show that the method can achieve any desired accuracy by assigning the corresponding accuracy to the sub-algorithms. Numerical examples are presented showing that the in this paper achieve or exceed the expected second to fourth-order methods implemented accuracy.
文摘This work is a continuation of the earlier article [1]. We establish new numerical methods for solving systems of Volterra integral equations with cardinal splines. The unknown functions are expressed as a linear combination of horizontal translations of certain cardinal spline functions with small compact supports. Then a simple system of equations on the coefficients is acquired for the system of integral equations. It is relatively straight forward to solve the system of unknowns and an approximation of the original solution with high accuracy is achieved. Several cardinal splines are applied in the paper to enhance the accuracy. The sufficient condition for the existence of the inverse matrix is examined and the convergence rate is investigated. We demonstrated the value of the methods using several examples.