Macao Science Satellite-1(MSS-1)will be launched at the early of 2023 into a near-circular orbit.The mission is designed to measure the Earth’s geomagnetic field with unpreceded accuracy through a new perspective.The...Macao Science Satellite-1(MSS-1)will be launched at the early of 2023 into a near-circular orbit.The mission is designed to measure the Earth’s geomagnetic field with unpreceded accuracy through a new perspective.The most important component installed on the satellite,to ensure high accuracy,is the deployable boom(Optical Bench).A Vector Field Magnetometer(VFM),an Advanced Stellar Compass(ASC),and a Couple Dark State Magnetometers(CDSM)are deployed on the deployable boom.In order to maximize the mission’s scientific output,a numerical simulator on MSS-1’s deployable boom was required to evaluate the adaptability of all devices on the deployable boom and assist the satellite’s data pre-processing.This paper first briefly describes the synthesis of the Earth’s total magnetic field and then describes the method simulating the output of scalar and vector magnetometers.Finally,the calibration method is applied to the synthetic magnetometer data to analyze the possible noise/error of the relevant instruments.Our results show that the simulator can imitate the disturbance of different noise sources or errors in the measuring system,and is especially useful for the satellite’s data processing group.展开更多
Record-breaking high waves occurred during the passage of the typhoon Bolaven(1215)(TYB) in the East China Sea(ECS) and Yellow Sea(YS) although its intensity did not reach the level of a super typhoon.Winds an...Record-breaking high waves occurred during the passage of the typhoon Bolaven(1215)(TYB) in the East China Sea(ECS) and Yellow Sea(YS) although its intensity did not reach the level of a super typhoon.Winds and directional wave measurements were made using a range of in-situ instruments mounted on an ocean tower and buoys.In order to understand how such high waves with long duration occurred,analyses have been made through measurement and numerical simulations.TYB winds were generated using the TC96 typhoon wind model with the best track data calibrated with the measurements.And then the wind fields were blended with the reanalyzed synoptic-scale wind fields for a wave model.Wave fields were simulated using WAM4.5 with adjustment of C_d for gust of winds and bottom friction for the study area.Thus the accuracy of simulations is considerably enhanced,and the computed results are also in better agreement with measured data than before.It is found that the extremely high waves evolved as a result of the superposition of distant large swells and high wind seas generated by strong winds from the front/right quadrant of the typhoon track.As the typhoon moved at a speed a little slower than the dominant wave group velocity in a consistent direction for two days,the wave growth was significantly enhanced by strong wind input in an extended fetch and non-linear interaction.展开更多
The numerical moire method with sensitivity as high as 0.03 nm has been presented. A quantitative displacement and strain analysis program has been proposed by using this method. It is applied to an edge dislocation a...The numerical moire method with sensitivity as high as 0.03 nm has been presented. A quantitative displacement and strain analysis program has been proposed by using this method. It is applied to an edge dislocation and a stacking fault in aluminum. The measured strain of edge dislocation is compared with theoretical prediction given by Peierls-Nabarro dislocation model. The displacement of stacking fault is also obtained.展开更多
This work deals with the numerical localization of small electromagnetic inhomogeneities. The underlying inverse problem considers, in a three-dimensional bounded domain, the time-harmonic Maxwell equations formulated...This work deals with the numerical localization of small electromagnetic inhomogeneities. The underlying inverse problem considers, in a three-dimensional bounded domain, the time-harmonic Maxwell equations formulated in electric field. Typically, the domain contains a finite number of unknown inhomogeneities of small volume and the inverse problem attempts to localize these inhomogeneities from a finite number of boundary measurements. Our localization approach is based on a recent framework that uses an asymptotic expansion for the perturbations in the tangential boundary trace of the curl of the electric field. We present three numerical localization procedures resulting from the combination of this asymptotic expansion with each of the following inversion algorithms: the Current Projection method, the MUltiple Signal Classification (MUSIC) algorithm, and an Inverse Fourier method. We perform a numerical study of the asymptotic expansion and compare the numerical results obtained from the three localization procedures in different settings.展开更多
基金the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the China National Space Administration’s Pre-research Project on Civil Aerospace Technologies(Grant No.D020303)+2 种基金the Open Project Program of State Key Laboratory of Lunar and Planetary Sciences(Macao University of Science and Technology)through grant SKLLPS(MUST)-2021-2023the Shanghai 2022"Science and Technology Innovation Action Plan"Hong Kong,Macao,and Taiwan Science and Technology Cooperation Project with Grant No.22590760900 for giving the funding support to assist the authors to complete the work successfully。
文摘Macao Science Satellite-1(MSS-1)will be launched at the early of 2023 into a near-circular orbit.The mission is designed to measure the Earth’s geomagnetic field with unpreceded accuracy through a new perspective.The most important component installed on the satellite,to ensure high accuracy,is the deployable boom(Optical Bench).A Vector Field Magnetometer(VFM),an Advanced Stellar Compass(ASC),and a Couple Dark State Magnetometers(CDSM)are deployed on the deployable boom.In order to maximize the mission’s scientific output,a numerical simulator on MSS-1’s deployable boom was required to evaluate the adaptability of all devices on the deployable boom and assist the satellite’s data pre-processing.This paper first briefly describes the synthesis of the Earth’s total magnetic field and then describes the method simulating the output of scalar and vector magnetometers.Finally,the calibration method is applied to the synthetic magnetometer data to analyze the possible noise/error of the relevant instruments.Our results show that the simulator can imitate the disturbance of different noise sources or errors in the measuring system,and is especially useful for the satellite’s data processing group.
基金The Ministry of Oceans and Fisheries of Korea-"The Research and Development on Coastal Hydraulic Investigation of Busan New Port"and"Cooperative Project on Korea-China Bilateral Committee on Ocean Science"the Korea Institute of Ocean Science and Technology(KIOST)Project under contract No.PE99325+1 种基金the China-Korea Joint Ocean Research Center(CKJORC)-"Cooperation on the Development of Basic Technologies for the Yellow Sea and East China Sea Operational Oceanographic System(YOOS)"the Nuclear Safety Project of CKJORC and Major Project of KIOST under contract No.PE99304
文摘Record-breaking high waves occurred during the passage of the typhoon Bolaven(1215)(TYB) in the East China Sea(ECS) and Yellow Sea(YS) although its intensity did not reach the level of a super typhoon.Winds and directional wave measurements were made using a range of in-situ instruments mounted on an ocean tower and buoys.In order to understand how such high waves with long duration occurred,analyses have been made through measurement and numerical simulations.TYB winds were generated using the TC96 typhoon wind model with the best track data calibrated with the measurements.And then the wind fields were blended with the reanalyzed synoptic-scale wind fields for a wave model.Wave fields were simulated using WAM4.5 with adjustment of C_d for gust of winds and bottom friction for the study area.Thus the accuracy of simulations is considerably enhanced,and the computed results are also in better agreement with measured data than before.It is found that the extremely high waves evolved as a result of the superposition of distant large swells and high wind seas generated by strong winds from the front/right quadrant of the typhoon track.As the typhoon moved at a speed a little slower than the dominant wave group velocity in a consistent direction for two days,the wave growth was significantly enhanced by strong wind input in an extended fetch and non-linear interaction.
基金the National Natural Science Foundation of China under Grants No.10562003 and 10272054
文摘The numerical moire method with sensitivity as high as 0.03 nm has been presented. A quantitative displacement and strain analysis program has been proposed by using this method. It is applied to an edge dislocation and a stacking fault in aluminum. The measured strain of edge dislocation is compared with theoretical prediction given by Peierls-Nabarro dislocation model. The displacement of stacking fault is also obtained.
基金supported by ACI NIM (171) from the French Ministry of Education and Scientific Research
文摘This work deals with the numerical localization of small electromagnetic inhomogeneities. The underlying inverse problem considers, in a three-dimensional bounded domain, the time-harmonic Maxwell equations formulated in electric field. Typically, the domain contains a finite number of unknown inhomogeneities of small volume and the inverse problem attempts to localize these inhomogeneities from a finite number of boundary measurements. Our localization approach is based on a recent framework that uses an asymptotic expansion for the perturbations in the tangential boundary trace of the curl of the electric field. We present three numerical localization procedures resulting from the combination of this asymptotic expansion with each of the following inversion algorithms: the Current Projection method, the MUltiple Signal Classification (MUSIC) algorithm, and an Inverse Fourier method. We perform a numerical study of the asymptotic expansion and compare the numerical results obtained from the three localization procedures in different settings.