期刊文献+
共找到828篇文章
< 1 2 42 >
每页显示 20 50 100
New Numerical Integration Formulations for Ordinary Differential Equations
1
作者 Serdar Beji 《Advances in Pure Mathematics》 2024年第8期650-666,共17页
An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions ... An entirely new framework is established for developing various single- and multi-step formulations for the numerical integration of ordinary differential equations. Besides polynomials, unconventional base-functions with trigonometric and exponential terms satisfying different conditions are employed to generate a number of formulations. Performances of the new schemes are tested against well-known numerical integrators for selected test cases with quite satisfactory results. Convergence and stability issues of the new formulations are not addressed as the treatment of these aspects requires a separate work. The general approach introduced herein opens a wide vista for producing virtually unlimited number of formulations. 展开更多
关键词 Single- and Multi-Step numerical Integration Unconventional Base-Functions Ordinary differential equations
下载PDF
Comparative Studies between Picard’s and Taylor’s Methods of Numerical Solutions of First Ordinary Order Differential Equations Arising from Real-Life Problems
2
作者 Khalid Abd Elrazig Awad Alla Elnour 《Journal of Applied Mathematics and Physics》 2024年第3期877-896,共20页
To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’... To solve the first-order differential equation derived from the problem of a free-falling object and the problem arising from Newton’s law of cooling, the study compares the numerical solutions obtained from Picard’s and Taylor’s series methods. We have carried out a descriptive analysis using the MATLAB software. Picard’s and Taylor’s techniques for deriving numerical solutions are both strong mathematical instruments that behave similarly. All first-order differential equations in standard form that have a constant function on the right-hand side share this similarity. As a result, we can conclude that Taylor’s approach is simpler to use, more effective, and more accurate. We will contrast Rung Kutta and Taylor’s methods in more detail in the following section. 展开更多
关键词 First-Order differential equations Picard Method Taylor Series Method numerical Solutions numerical Examples MATLAB Software
下载PDF
The θ-Methods in Numerical Solution of Systems of Differential Equations with Two Delay Terms 被引量:2
3
作者 Tian Hongjiong & Kuang Jiaoxun (Department of Mathematics, Shanghai Normal University, Shanghai 200234, China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1994年第3期32-40,共9页
This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solutio... This paper deals with the numerical solution of initial value problems for systems of differential equations with two delay terms. We investigate the stability of adaptations of the θ-methods in the numerical solution of test equations u'(t) = a 11 u(t) + a12v(t) + b11 u(t - τ1) + b12v(t-τ2,v'(t) = a21 u(t) + a22 v(t) + b21 u(t -τ1,) + b22 v(t -τ2), t>0,with initial conditionsu(t)=u0(t),v(t) =v0(t), t≤0.where aij, bij∈C, τj >0, i,j = 1,2,, and u0(t), v0(t)are continuous and complex valued. Sufficient conditions for the asymptotic stability of test equation are derived. Furthermore, with respect to an appropriate definition of stability for the numerical method, it is proved that the linear θ-method is stable if and only if 1/2≤θ≤1 and the one-leg θ-method is stable if and only if θ= 1. 展开更多
关键词 Delay differential equations numerical solution Θ-METHODS Asymptotic stability Schur polynomial.
下载PDF
THE NUMERICAL STABILITY OF THE BLOCK θ-METHODS FOR DELAY DIFFERENTIAL EQUATIONS 被引量:1
4
作者 田红炯 匡蛟勋 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2001年第1期1-8,共8页
This paper focuses on the numerical stability of the block θ methods adapted to differential equations with a delay argument. For the block θ methods, an interpolation procedure is introduced which leads to the nume... This paper focuses on the numerical stability of the block θ methods adapted to differential equations with a delay argument. For the block θ methods, an interpolation procedure is introduced which leads to the numerical processes that satisfy an important asymptotic stability condition related to the class of test problems y′(t)=ay(t)+by(t-τ) with a,b∈C, Re(a)<-|b| and τ>0. We prove that the block θ method is GP stable if and only if the method is A stable for ordinary differential equations. Furthermore, it is proved that the P and GP stability are equivalent for the block θ method. 展开更多
关键词 numerical stability block θ methods delay differential equations.
下载PDF
Existence and Numerical Solution for a Coupled System of Multi-term Fractional Differential Equations 被引量:1
5
作者 杨李凡 叶海平 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期613-619,共7页
An initial value problem was considered for a coupled differential system with multi-term Caputo type fractional derivatives. By means of nonlinear alternative of Leray-Schauder and Banach contraction principle,the ex... An initial value problem was considered for a coupled differential system with multi-term Caputo type fractional derivatives. By means of nonlinear alternative of Leray-Schauder and Banach contraction principle,the existence and uniqueness of solutions for the system were derived. Using a fractional predictorcorrector method, a numerical method was presented for the specified system. An example was given to illustrate the obtained results. 展开更多
关键词 multi-term fractional differential equation Caputo derivative EXISTENCE UNIQUENESS numerical solution
下载PDF
Graphical Processing Unit Based Time-Parallel Numerical Method for Ordinary Differential Equations 被引量:1
6
作者 Sumathi Lakshmiranganatha Suresh S. Muknahallipatna 《Journal of Computer and Communications》 2020年第2期39-63,共25页
On-line transient stability analysis of a power grid is crucial in determining whether the power grid will traverse to a steady state stable operating point after a disturbance. The transient stability analysis involv... On-line transient stability analysis of a power grid is crucial in determining whether the power grid will traverse to a steady state stable operating point after a disturbance. The transient stability analysis involves computing the solutions of the algebraic equations modeling the grid network and the ordinary differential equations modeling the dynamics of the electrical components like synchronous generators, exciters, governors, etc., of the grid in near real-time. In this research, we investigate the use of time-parallel approach in particular the Parareal algorithm implementation on Graphical Processing Unit using Compute Unified Device Architecture to compute solutions of ordinary differential equations. The numerical solution accuracy and computation time of the Parareal algorithm executing on the GPU are demonstrated on the single machine infinite bus test system. Two types of dynamic model of the single synchronous generator namely the classical and detailed models are studied. The numerical solutions of the ordinary differential equations computed by the Parareal algorithm are compared to that computed using the modified Euler’s method demonstrating the accuracy of the Parareal algorithm executing on GPU. Simulations are performed with varying numerical integration time steps, and the suitability of Parareal algorithm in computing near real-time solutions of ordinary different equations is presented. A speedup of 25× and 31× is achieved with the Parareal algorithm for classical and detailed dynamic models of the synchronous generator respectively compared to the sequential modified Euler’s method. The weak scaling efficiency of the Parareal algorithm when required to solve a large number of ordinary differential equations at each time step due to the increase in sequential computations and associated memory transfer latency between the CPU and GPU is discussed. 展开更多
关键词 Time-Parallel differential equation numerical Integration GRAPHIC Processing Unit
下载PDF
On Trigonometric Numerical Integrator for Solving First Order Ordinary Differential Equation 被引量:1
7
作者 A. A. Obayomi S. O. Ayinde O. M. Ogunmiloro 《Journal of Applied Mathematics and Physics》 2019年第11期2564-2578,共15页
In this paper, we used an interpolation function with strong trigonometric components to derive a numerical integrator that can be used for solving first order initial value problems in ordinary differential equation.... In this paper, we used an interpolation function with strong trigonometric components to derive a numerical integrator that can be used for solving first order initial value problems in ordinary differential equation. This numerical integrator has been tested for desirable qualities like stability, convergence and consistency. The discrete models have been used for a numerical experiment which makes us conclude that the schemes are suitable for the solution of first order ordinary differential equation. 展开更多
关键词 numerical INTEGRATOR Ordinary differential equation INITIAL Value Problems Stability Analysis NONSTANDARD METHODS INTERPOLATION METHODS
下载PDF
A New Second Order Numerical Scheme for Solving Forward Backward Stochastic Differential Equations with Jumps 被引量:1
8
作者 Hongqiang Zhou Yang Li Zhe Wang 《Applied Mathematics》 2016年第12期1408-1414,共8页
In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator  linearly depending on . And we theoretically prove that the conv... In this paper, we propose a new second order numerical scheme for solving backward stochastic differential equations with jumps with the generator  linearly depending on . And we theoretically prove that the convergence rates of them are of second order for solving  and of first order for solving  and  in  norm. 展开更多
关键词 numerical Scheme Error Estimates Backward Stochastic differential equations
下载PDF
A ONE-STEP EXPLICIT FORMULA FOR THE NUMERICAL SOLUTION OF STIFF ORDINARY DIFFERENTIAL EQUATION
9
作者 吴新元 夏建林 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第1期53-58,共6页
In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also... In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also several numerical examples are included. 展开更多
关键词 STIFF equation numerical stability numerical solutions of ordinary differential equation numerical analysis.
下载PDF
Numerical Algorithms for Solving One Type of Singular Integro-Differential Equation Containing Derivatives of the Time Delay States 被引量:1
10
作者 Shihchung Chiang Terry L. Herdman 《Applied Mathematics》 2015年第8期1294-1301,共8页
This study presents numerical algorithms for solving a class of equations that partly consists of derivatives of the unknown state at previous certain times, as well as an integro-differential term containing a weakly... This study presents numerical algorithms for solving a class of equations that partly consists of derivatives of the unknown state at previous certain times, as well as an integro-differential term containing a weakly singular kernel. These equations are types of integro-differential equation of the second kind and were originally obtained from an aeroelasticity problem. One of the main contributions of this study is to propose numerical algorithms that do not involve transforming the original equation into the corresponding Volterra equation, but still enable the numerical solution of the original equation to be determined. The feasibility of the proposed numerical algorithm is demonstrated by applying examples in measuring the maximum errors with exact solutions at every computed nodes and calculating the corresponding numerical rates of convergence thereafter. 展开更多
关键词 Integro-differential equation of the Second KIND WEAKLY SINGULAR KERNEL numerical Algorithms Rates of Convergence
下载PDF
On L ∞ Stability and Convergence of Fictitious Domain Method for the Numerical Solution to Parabolic Differential Equation with Derivative Boundary Conditions
11
作者 孙志忠 《Journal of Southeast University(English Edition)》 EI CAS 1996年第2期108-111,共4页
This paper investigates some known difference schemes for the numerical solution to parabolic differential equation with derivative boundary conditions by the fictitious domain method.The stability and convergence in... This paper investigates some known difference schemes for the numerical solution to parabolic differential equation with derivative boundary conditions by the fictitious domain method.The stability and convergence in L ∞ are proven. 展开更多
关键词 numerical solution fictitious domain METHOD PARABOLIC differential equation DERIVATIVE boundary condition
下载PDF
AN INTEGRATION METHOD WITH FITTING CUBIC SPLINE FUNCTIONS TO A NUMERICAL MODEL OF 2ND-ORDER SPACE-TIME DIFFERENTIAL REMAINDER——FOR AN IDEAL GLOBAL SIMULATION CASE WITH PRIMITIVE ATMOSPHERIC EQUATIONS
12
作者 辜旭赞 张兵 王明欢 《Journal of Tropical Meteorology》 SCIE 2013年第4期388-396,共9页
In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubi... In this paper,the forecasting equations of a 2nd-order space-time differential remainder are deduced from the Navier-Stokes primitive equations and Eulerian operator by Taylor-series expansion.Here we introduce a cubic spline numerical model(Spline Model for short),which is with a quasi-Lagrangian time-split integration scheme of fitting cubic spline/bicubic surface to all physical variable fields in the atmospheric equations on spherical discrete latitude-longitude mesh.A new algorithm of"fitting cubic spline—time step integration—fitting cubic spline—……"is developed to determine their first-and2nd-order derivatives and their upstream points for time discrete integral to the governing equations in Spline Model.And the cubic spline function and its mathematical polarities are also discussed to understand the Spline Model’s mathematical foundation of numerical analysis.It is pointed out that the Spline Model has mathematical laws of"convergence"of the cubic spline functions contracting to the original functions as well as its 1st-order and 2nd-order derivatives.The"optimality"of the 2nd-order derivative of the cubic spline functions is optimal approximation to that of the original functions.In addition,a Hermite bicubic patch is equivalent to operate on a grid for a 2nd-order derivative variable field.Besides,the slopes and curvatures of a central difference are identified respectively,with a smoothing coefficient of 1/3,three-point smoothing of that of a cubic spline.Then the slopes and curvatures of a central difference are calculated from the smoothing coefficient 1/3 and three-point smoothing of that of a cubic spline,respectively.Furthermore,a global simulation case of adiabatic,non-frictional and"incompressible"model atmosphere is shown with the quasi-Lagrangian time integration by using a global Spline Model,whose initial condition comes from the NCEP reanalysis data,along with quasi-uniform latitude-longitude grids and the so-called"shallow atmosphere"Navier-Stokes primitive equations in the spherical coordinates.The Spline Model,which adopted the Navier-Stokes primitive equations and quasi-Lagrangian time-split integration scheme,provides an initial ideal case of global atmospheric circulation.In addition,considering the essentially non-linear atmospheric motions,the Spline Model could judge reasonably well simple points of any smoothed variable field according to its fitting spline curvatures that must conform to its physical interpretation. 展开更多
关键词 numerical forecast and numerical SIMULATION 2nd-order SPACE-TIME differential REMAINDER numerical model cubic spline functions Navier-Stokes PRIMITIVE equationS quasi-Lagrangian time-split integration scheme global SIMULATION case
下载PDF
Numerical Solution for Fractional Partial Differential Equation with Bernstein Polynomials
13
作者 Jin-Sheng Wang Li-Qing Liu +1 位作者 Yi-Ming Chen Xiao-Hong Ke 《Journal of Electronic Science and Technology》 CAS 2014年第3期331-338,共8页
A framework to obtain numerical solution of the fractional partial differential equation using Bernstein polynomials is presented. The main characteristic behind this approach is that a fractional order operational ma... A framework to obtain numerical solution of the fractional partial differential equation using Bernstein polynomials is presented. The main characteristic behind this approach is that a fractional order operational matrix of Bernstein polynomials is derived. With the operational matrix, the equation is transformed into the products of several dependent matrixes which can also be regarded as the system of linear equations after dispersing the variable. By solving the linear equations, the numerical solutions are acquired. Only a small number of Bernstein polynomials are needed to obtain a satisfactory result. Numerical examples are provided to show that the method is computationally efficient. 展开更多
关键词 Absolute error Bernstein polynomials fractional partial differential equation numerical solution operational matrix
下载PDF
Numerical Study of Fractional Differential Equations of Lane-Emden Type by Method of Collocation
14
作者 Mohammed S. Mechee Norazak Senu 《Applied Mathematics》 2012年第8期851-856,共6页
Lane-Emden differential equations of order fractional has been studied.Numerical solution of this type is considered by collocation method. Some of examples are illustrated. The comparison between numerical and analyt... Lane-Emden differential equations of order fractional has been studied.Numerical solution of this type is considered by collocation method. Some of examples are illustrated. The comparison between numerical and analytic methods has been introduced. 展开更多
关键词 FRACTIONAL CALCULUS FRACTIONAL differential equation Lane-Emden equation numerical Collection METHOD
下载PDF
Numerical Solution of Differential Equations by Direct Taylor Expansion
15
作者 Pirooz Mohazzabi Jennifer L. Becker 《Journal of Applied Mathematics and Physics》 2017年第3期623-630,共8页
A variation of the direct Taylor expansion algorithm is suggested and applied to several linear and nonlinear differential equations of interest in physics and engineering, and the results are compared with those obta... A variation of the direct Taylor expansion algorithm is suggested and applied to several linear and nonlinear differential equations of interest in physics and engineering, and the results are compared with those obtained from other algorithms. It is shown that the suggested algorithm competes strongly with other existing algorithms, both in accuracy and ease of application, while demanding a shorter computation time. 展开更多
关键词 TAYLOR Series EXPANSION Algorithm numerical Solution differential equationS
下载PDF
Stability Analysis of a Numerical Integrator for Solving First Order Ordinary Differential Equation
16
作者 Samuel Olukayode Ayinde Adesoji Abraham Obayomi Funmilayo Sarah Adebayo 《Journal of Applied Mathematics and Physics》 2017年第11期2196-2204,共9页
In this paper, we used an interpolation function to derive a Numerical Integrator that can be used for solving first order Initial Value Problems in Ordinary Differential Equation. The numerical quality of the Integra... In this paper, we used an interpolation function to derive a Numerical Integrator that can be used for solving first order Initial Value Problems in Ordinary Differential Equation. The numerical quality of the Integrator has been analyzed to authenticate the reliability of the new method. The numerical test showed that the finite difference methods developed possess the same monotonic properties with the analytic solution of the sampled Initial Value Problems. 展开更多
关键词 numerical INTEGRATOR Autonomous and NON-AUTONOMOUS Ordinary differential equation INITIAL Value Problems Stability Analysis
下载PDF
A Uniformly Convergent Numerical Method Using Weak Formulation for Singularly Perturbed Differential Equations
17
作者 Weiqun Zhang 《Journal of Mathematics and System Science》 2019年第1期1-6,共6页
A numerical method using weak formulation is proposed to solve singularly perturbed differential equations. The numerical method is applied to both linear and nonlinear perturbation problems. A linear differential equ... A numerical method using weak formulation is proposed to solve singularly perturbed differential equations. The numerical method is applied to both linear and nonlinear perturbation problems. A linear differential equation is solved using its weak formulation with a test space composed of exponential functions matching boundary layers. A nonlinear singular perturbation problem is converted into a system of linear differentiation equations. Then each linear differential equation is solved iteratively. The uniform convergence, which is independent of the singular perturbation parameter, is numerically verified. 展开更多
关键词 SINGULAR PERTURBATION differential equations boundary layers numerical methods WEAK formulation
下载PDF
NUMERICAL SOLUTION OF QUASILINEAR SINGULARLY PERTURBED ORDINARY DIFFERENTIAL EQUATION WITHOUT TURNING POINTS
18
作者 林平 苏煜城 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第11期1005-1010,共6页
In this paper we consider a quasilinear second order ordinary diferential equation with a small parameter Firstly an approximate problem is constructed. Then an iterative procedure is developed. Finally we give an alg... In this paper we consider a quasilinear second order ordinary diferential equation with a small parameter Firstly an approximate problem is constructed. Then an iterative procedure is developed. Finally we give an algorithm whose accuracy is good for arbitrary e>0 . 展开更多
关键词 numerical SOLUTION OF QUASILINEAR SINGULARLY PERTURBED ORDINARY differential equation WITHOUT TURNING POINTS
下载PDF
A Comparative Study of Adomian Decomposition Method with Variational Iteration Method for Solving Linear and Nonlinear Differential Equations
19
作者 Sarah Khaled Al Baghdadi N. Ameer Ahammad 《Journal of Applied Mathematics and Physics》 2024年第8期2789-2819,共31页
This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dyna... This study compares the Adomian Decomposition Method (ADM) and the Variational Iteration Method (VIM) for solving nonlinear differential equations in engineering. Differential equations are essential for modeling dynamic systems in various disciplines, including biological processes, heat transfer, and control systems. This study addresses first, second, and third-order nonlinear differential equations using Mathematica for data generation and graphing. The ADM, developed by George Adomian, uses Adomian polynomials to handle nonlinear terms, which can be computationally intensive. In contrast, VIM, developed by He, directly iterates the correction functional, providing a more straightforward and efficient approach. This study highlights VIM’s rapid convergence and effectiveness of VIM, particularly for nonlinear problems, where it simplifies calculations and offers direct solutions without polynomial derivation. The results demonstrate VIM’s superior efficiency and rapid convergence of VIM compared with ADM. The VIM’s minimal computational requirements make it practical for real-time applications and complex system modeling. Our findings align with those of previous research, confirming VIM’s efficiency of VIM in various engineering applications. This study emphasizes the importance of selecting appropriate methods based on specific problem requirements. While ADM is valuable for certain nonlinearities, VIM’s approach is ideal for many engineering scenarios. Future research should explore broader applications and hybrid methods to enhance the solution’s accuracy and efficiency. This comprehensive comparison provides valuable guidance for selecting effective numerical methods for differential equations in engineering. 展开更多
关键词 differential equations numerical Analysis Mathematical Computing Engineering Models Nonlinear Dynamics
下载PDF
THE STABILITY OF LINEAR MULTISTEP METHODS FOR SYSTEMS OF DELAY DIFFERENTIAL EQUATIONS 被引量:2
20
作者 田红炯 匡蛟勋 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1995年第1期10-16,共7页
This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the... This paper deals with the numerical solution of initial value problems for systems of differential equations with a delay argument. The numerical stability of a linear multistep method is investigated by analysing the solution of the lest equation y’(t)=Ay(t) + By(1-t),where A,B denote constant complex N×N-matrices,and t】0.We investigate carefully the characterization of the stability region. 展开更多
关键词 numerical stability linear mullistep method DELAY differential equation.
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部