Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological communit...Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological community.Fundamental achievements have been made in the theories, methods, and NWP model development in China, which are of certain international impacts. In this paper, the scientific and technological progress of NWP in China since1949 is summarized. The current status and recent progress of the domestically developed NWP system-GRAPES(Global/Regional Assimilation and Pr Ediction System) are presented. Through independent research and development in the past 10 years, the operational GRAPES system has been established, which includes both regional and global deterministic and ensemble prediction models, with resolutions of 3-10 km for regional and 25-50 km for global forecasts. Major improvements include establishment of a new non-hydrostatic dynamic core, setup of four-dimensional variational data assimilation, and development of associated satellite application. As members of the GRAPES system, prediction models for atmospheric chemistry and air pollution, tropical cyclones, and ocean waves have also been developed and put into operational use. The GRAPES system has been an important milestone in NWP science and technology in China.展开更多
Surface soil moisture has great impact on both meso-and microscale atmospheric processes,especially on severe local convection processes and on the dynamics of short-lived torrential rains.To promote the performance o...Surface soil moisture has great impact on both meso-and microscale atmospheric processes,especially on severe local convection processes and on the dynamics of short-lived torrential rains.To promote the performance of the land surface model (LSM) in surface soil moisture simulations,a hybrid hydrologic runoff parameterization scheme based upon the essential modeling theories of the Xin'anjiang model and Topography based hydrological Model (TOPMODEL) was developed in preference to the simple water balance model (SWB) in the Noah LSM.Using a strategy for coupling and integrating this modified Noah LSM to the Global/Regional Assimilation and Prediction System (GRAPES) analogous to that used with the standard Noah LSM,a simulation of atmosphere-land surface interactions for a torrential event during 2007 in Shandong was attempted.The results suggested that the surface,10-cm depth soil moisture simulated by GRAPES using the modified hydrologic approach agrees well with the observations.Improvements from the simulated results were found,especially over eastern Shandong.The simulated results,compared with the products of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) soil moisture datasets,indicated a consistent spatial pattern over all of China.The temporal variation of surface soil moisture was validated with the data at an observation station,also demonstrated that GRAPES with modified Noah LSM exhibits a more reasonable response to precipitation events,even though biases and systematic trends may still exist.展开更多
Review and analysis of NWP in China in the past decade have been made.Also comparisons have been done between NWP ten years ago and that of today from different aspects.From them it can be seen how rapid the progress ...Review and analysis of NWP in China in the past decade have been made.Also comparisons have been done between NWP ten years ago and that of today from different aspects.From them it can be seen how rapid the progress was made during that period.Finally the differences between the advanced world level and ours in areas of NWP are estimated and the steps we should take are suggested.展开更多
An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the an...An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the annually first raining season(AFRS). Pattern, magnitude and area of precipitation, evolution of synoptic situation, as well as apparent heat source and apparent moisture sink between different ensemble members are comparatively analyzed. The choice of parameterization scheme for land-surface processes gives rise to the largest influence on the precipitation prediction. The influences of cumulus-convection and cloud-microphysics processes are mainly focused on heavy rainfall;the use of cumulus-convection parameterization tends to produce large-area and light rainfall. Change in parameterization schemes for land-surface and cumulus-convection processes both will cause prominent change in forecast of both dynamic and thermodynamic variables, while change in cloud-microphysics processes show primary impact on dynamic variables. Comparing simplified Arakawa-Schubert and Kain-Fritsch with Betts-Miller-Janjic schemes, SLAB with NOAH schemes, as well as both WRF single moment 6-class and NCEP 3-class with simplified explicit schemes of phase-mixed cloud and precipitation shows that the former predicts stronger low-level jets and high humidity concentration, more convective rainfall and local heavy rainfall, and have better performance in precipitation forecast. Appropriate parameterization schemes can reasonably describe the physical process related to heavy rainfall in South China in the AFRS, such as low-level convergence, latent heat release, vertical transport of heat and water vapor, thereby depicting the multi-scale interactions of low-level jet and meso-scale convective systems in heavy rainfall suitably, and improving the prediction of heavy rainfall in South China in the AFRS as a result.展开更多
为了研究海表面温度(sea surface temperature,SST)对低空大气波导数值模拟的影响,针对南海海域基于天气研究与预报(weather research and forecasting,WRF)模式开展了不同SST对低空大气波导数值模拟的影响研究.结果表明:精确的SST对低...为了研究海表面温度(sea surface temperature,SST)对低空大气波导数值模拟的影响,针对南海海域基于天气研究与预报(weather research and forecasting,WRF)模式开展了不同SST对低空大气波导数值模拟的影响研究.结果表明:精确的SST对低空大气波导数值模拟影响最大,其次是更新周期;美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,NOAA)提供的最优插值SST给出的大气波导模拟结果最好,正确率为68.2%,且波导底高平均误差和标准差最小,这是由于其模拟的相对湿度和气温变化较为准确,其次为气候预报再分析系统(climate forecast system reanalysis,CFSR)给出的SST方案较好;此外不同嵌套网格方式对大气波导数值模拟也有影响,在最优方案中子网格模拟的大气波导正确率和发生概率分别提高了11.8%和10.4%,虚报率降低了2.4%.该研究可为南海低空大气波导的精确预报提供技术支撑.展开更多
With increasing resolution in numerical weather prediction (NWP) models, the model topography can be described with finer resolution and includes steeper slopes. Consequently, negative effects of the traditional ter...With increasing resolution in numerical weather prediction (NWP) models, the model topography can be described with finer resolution and includes steeper slopes. Consequently, negative effects of the traditional terrain-following vertical coordinate on high-resolution numerical simulations become more distinct due to larger errors in the pressure gradient force (PGF) calculation and associated distortions of the gravity wave along the coordinate surface. A series of numerical experiments have been conducted in this study, including idealized test cases of gravity wave simulation over a complex mountain, error analysis of the PGF estimation over a real topography, and a suite of real-data test cases. The GRAPES-Meso model is utilized with four different coordinates, i.e., the traditional terrain-following vertical coordinate proposed by Gal-Chen and Somerville (hereinafter referred to as the Gal.C.S coordinate), the one-scale smoothed level (SLEVE1), the two-scale smoothed level (SLEVE2), and the COSINE (COS) coordinates. The results of the gravity wave simulation indicate that the GRAPES-Meso model generally can reproduce the mountain-induced gravity waves, which are consistent with the analytic solution. However, the shapes, vertical structures, and intensities Of the waves are better simulated with the SLEVE2 coordinate than with the other three coordinates. The model with the COS coordinate also performs well, except at lower levels where it is not as effective as the SLEVE2 coordinate in suppressing the PGF errors. In contrast, the gravity waves simulated in both the Gal.C.S and SLEVE1 coordinates are relatively distorted. The estimated PGF errors in a rest atmosphere over the real complex topography are much smaller (even disappear at the middle and upper levels) in the GRAPES-Meso model using the SLEVE2 and COS coordinates than those using the Gal.C.S and SLEVE1 coordinates. The results of the real-data test cases conducted over a one-month period suggest that the three modified vertical coordinates (SLEVE1, SLEVE2, and COS coordinates) give better results than the traditional Gal.C.S coordinate in terms of forecasting bias and root mean square error, and forecasting anomaly correlation coefficients. In conclusion, the SLEVE2 coordinate is proved to be the best option for the GRAPES-Meso model.展开更多
Based on the atmospheric self_memorization principle, a complex memory function was introduced and the spectral form of atmospheric self_memorial equation was derived. Setting up and solving the equation constitute a ...Based on the atmospheric self_memorization principle, a complex memory function was introduced and the spectral form of atmospheric self_memorial equation was derived. Setting up and solving the equation constitute a new approach of the numerical weather prediction. Using the spectral model T42L9 as a dynamic kernel, a global self_memorial T42 model (SMT42) was established, with which twelve cases of 30_d integration experiments were carried out. Compared with the T42L9, the SMT42 is much better in 500 hPa forecast not only for daily circulation but also for monthly mean circulation. The anomaly correlation coefficient (ACC) of forecast for monthly mean circulation has been improved to 0.42, increased by 0.05, and the root_mean_square error (RMSE) has been reduced from 6.09 to 4.03 dagpm.展开更多
基金Supported by the National Key Research and Development Program of China(2017YFC1501900)Middle-and Long-term Development Strategic Research Project of the Chinese Academy of Engineering(2019-ZCQ-06)。
文摘Numerical weather prediction(NWP) is a core technology in weather forecast and disaster mitigation. China’s NWP research and operational applications have been attached great importance by the meteorological community.Fundamental achievements have been made in the theories, methods, and NWP model development in China, which are of certain international impacts. In this paper, the scientific and technological progress of NWP in China since1949 is summarized. The current status and recent progress of the domestically developed NWP system-GRAPES(Global/Regional Assimilation and Pr Ediction System) are presented. Through independent research and development in the past 10 years, the operational GRAPES system has been established, which includes both regional and global deterministic and ensemble prediction models, with resolutions of 3-10 km for regional and 25-50 km for global forecasts. Major improvements include establishment of a new non-hydrostatic dynamic core, setup of four-dimensional variational data assimilation, and development of associated satellite application. As members of the GRAPES system, prediction models for atmospheric chemistry and air pollution, tropical cyclones, and ocean waves have also been developed and put into operational use. The GRAPES system has been an important milestone in NWP science and technology in China.
基金funded by the National BasicResearch Program of China (Grant No. 2010CB951404)the National Natural Science Foundation of China (Grant No. 40971024)CMA Special Meteorology Project (Grant No.GYHY200706001)
文摘Surface soil moisture has great impact on both meso-and microscale atmospheric processes,especially on severe local convection processes and on the dynamics of short-lived torrential rains.To promote the performance of the land surface model (LSM) in surface soil moisture simulations,a hybrid hydrologic runoff parameterization scheme based upon the essential modeling theories of the Xin'anjiang model and Topography based hydrological Model (TOPMODEL) was developed in preference to the simple water balance model (SWB) in the Noah LSM.Using a strategy for coupling and integrating this modified Noah LSM to the Global/Regional Assimilation and Prediction System (GRAPES) analogous to that used with the standard Noah LSM,a simulation of atmosphere-land surface interactions for a torrential event during 2007 in Shandong was attempted.The results suggested that the surface,10-cm depth soil moisture simulated by GRAPES using the modified hydrologic approach agrees well with the observations.Improvements from the simulated results were found,especially over eastern Shandong.The simulated results,compared with the products of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) soil moisture datasets,indicated a consistent spatial pattern over all of China.The temporal variation of surface soil moisture was validated with the data at an observation station,also demonstrated that GRAPES with modified Noah LSM exhibits a more reasonable response to precipitation events,even though biases and systematic trends may still exist.
文摘Review and analysis of NWP in China in the past decade have been made.Also comparisons have been done between NWP ten years ago and that of today from different aspects.From them it can be seen how rapid the progress was made during that period.Finally the differences between the advanced world level and ours in areas of NWP are estimated and the steps we should take are suggested.
基金National Natural Science Foundation of China(41405104)Specialized Project for Public Welfare Industries(Meteorological Sector)(GYHY201306004)+2 种基金Guangdong Science and Technology Planning Project(2012A061400012)Project of Guangdong Provincial Meteorological Bureau for Science and Technology(2013A04)Science and Technology Plan for the 12th Five-Year of Social and Economic Development(2012BAC22B00)
文摘An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the annually first raining season(AFRS). Pattern, magnitude and area of precipitation, evolution of synoptic situation, as well as apparent heat source and apparent moisture sink between different ensemble members are comparatively analyzed. The choice of parameterization scheme for land-surface processes gives rise to the largest influence on the precipitation prediction. The influences of cumulus-convection and cloud-microphysics processes are mainly focused on heavy rainfall;the use of cumulus-convection parameterization tends to produce large-area and light rainfall. Change in parameterization schemes for land-surface and cumulus-convection processes both will cause prominent change in forecast of both dynamic and thermodynamic variables, while change in cloud-microphysics processes show primary impact on dynamic variables. Comparing simplified Arakawa-Schubert and Kain-Fritsch with Betts-Miller-Janjic schemes, SLAB with NOAH schemes, as well as both WRF single moment 6-class and NCEP 3-class with simplified explicit schemes of phase-mixed cloud and precipitation shows that the former predicts stronger low-level jets and high humidity concentration, more convective rainfall and local heavy rainfall, and have better performance in precipitation forecast. Appropriate parameterization schemes can reasonably describe the physical process related to heavy rainfall in South China in the AFRS, such as low-level convergence, latent heat release, vertical transport of heat and water vapor, thereby depicting the multi-scale interactions of low-level jet and meso-scale convective systems in heavy rainfall suitably, and improving the prediction of heavy rainfall in South China in the AFRS as a result.
文摘为了研究海表面温度(sea surface temperature,SST)对低空大气波导数值模拟的影响,针对南海海域基于天气研究与预报(weather research and forecasting,WRF)模式开展了不同SST对低空大气波导数值模拟的影响研究.结果表明:精确的SST对低空大气波导数值模拟影响最大,其次是更新周期;美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration,NOAA)提供的最优插值SST给出的大气波导模拟结果最好,正确率为68.2%,且波导底高平均误差和标准差最小,这是由于其模拟的相对湿度和气温变化较为准确,其次为气候预报再分析系统(climate forecast system reanalysis,CFSR)给出的SST方案较好;此外不同嵌套网格方式对大气波导数值模拟也有影响,在最优方案中子网格模拟的大气波导正确率和发生概率分别提高了11.8%和10.4%,虚报率降低了2.4%.该研究可为南海低空大气波导的精确预报提供技术支撑.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2013CB430106)National Natural Science Foundation of China(41375108)National Science and Technology Support Program of China(2012BAC22B01)
文摘With increasing resolution in numerical weather prediction (NWP) models, the model topography can be described with finer resolution and includes steeper slopes. Consequently, negative effects of the traditional terrain-following vertical coordinate on high-resolution numerical simulations become more distinct due to larger errors in the pressure gradient force (PGF) calculation and associated distortions of the gravity wave along the coordinate surface. A series of numerical experiments have been conducted in this study, including idealized test cases of gravity wave simulation over a complex mountain, error analysis of the PGF estimation over a real topography, and a suite of real-data test cases. The GRAPES-Meso model is utilized with four different coordinates, i.e., the traditional terrain-following vertical coordinate proposed by Gal-Chen and Somerville (hereinafter referred to as the Gal.C.S coordinate), the one-scale smoothed level (SLEVE1), the two-scale smoothed level (SLEVE2), and the COSINE (COS) coordinates. The results of the gravity wave simulation indicate that the GRAPES-Meso model generally can reproduce the mountain-induced gravity waves, which are consistent with the analytic solution. However, the shapes, vertical structures, and intensities Of the waves are better simulated with the SLEVE2 coordinate than with the other three coordinates. The model with the COS coordinate also performs well, except at lower levels where it is not as effective as the SLEVE2 coordinate in suppressing the PGF errors. In contrast, the gravity waves simulated in both the Gal.C.S and SLEVE1 coordinates are relatively distorted. The estimated PGF errors in a rest atmosphere over the real complex topography are much smaller (even disappear at the middle and upper levels) in the GRAPES-Meso model using the SLEVE2 and COS coordinates than those using the Gal.C.S and SLEVE1 coordinates. The results of the real-data test cases conducted over a one-month period suggest that the three modified vertical coordinates (SLEVE1, SLEVE2, and COS coordinates) give better results than the traditional Gal.C.S coordinate in terms of forecasting bias and root mean square error, and forecasting anomaly correlation coefficients. In conclusion, the SLEVE2 coordinate is proved to be the best option for the GRAPES-Meso model.
文摘Based on the atmospheric self_memorization principle, a complex memory function was introduced and the spectral form of atmospheric self_memorial equation was derived. Setting up and solving the equation constitute a new approach of the numerical weather prediction. Using the spectral model T42L9 as a dynamic kernel, a global self_memorial T42 model (SMT42) was established, with which twelve cases of 30_d integration experiments were carried out. Compared with the T42L9, the SMT42 is much better in 500 hPa forecast not only for daily circulation but also for monthly mean circulation. The anomaly correlation coefficient (ACC) of forecast for monthly mean circulation has been improved to 0.42, increased by 0.05, and the root_mean_square error (RMSE) has been reduced from 6.09 to 4.03 dagpm.