Aiming at the complex and restrictive characteristics of human resource allocation in multiple scientific university research projects, an improved pigeon-inspired optimization(IPIO) algorithm is proposed wherein loss...Aiming at the complex and restrictive characteristics of human resource allocation in multiple scientific university research projects, an improved pigeon-inspired optimization(IPIO) algorithm is proposed wherein loss minimization and the shortest project delay time are considered as optimization goals. Firstly, mathematical modelling of the problem is carried out, and the multi-objective optimization problem is transformed into a single-objective optimization problem by means of a weighted solution. In the second step, the traditional pigeon-inspired optimization(PIO) algorithm is discretized, and an adaptive parameter strategy is adopted to improve the shortcomings of the algorithm itself. Finally, by comparing the simulation results with the original algorithm and the genetic algorithm in the optimization of human resource allocation in multiple projects, the feasibility and superiority of the proposed algorithm in the optimization of human resource allocation in multi-scientific research projects is verified.展开更多
基金supported by the Fundamental Research Funds for the Central Scientific Research Institutes (Grant No. 20200306)。
文摘Aiming at the complex and restrictive characteristics of human resource allocation in multiple scientific university research projects, an improved pigeon-inspired optimization(IPIO) algorithm is proposed wherein loss minimization and the shortest project delay time are considered as optimization goals. Firstly, mathematical modelling of the problem is carried out, and the multi-objective optimization problem is transformed into a single-objective optimization problem by means of a weighted solution. In the second step, the traditional pigeon-inspired optimization(PIO) algorithm is discretized, and an adaptive parameter strategy is adopted to improve the shortcomings of the algorithm itself. Finally, by comparing the simulation results with the original algorithm and the genetic algorithm in the optimization of human resource allocation in multiple projects, the feasibility and superiority of the proposed algorithm in the optimization of human resource allocation in multi-scientific research projects is verified.