针对谱聚类算法在解决高维、大数据量的聚类问题时出现的效率不高和准确率明显下降的问题进行了研究,并在此研究基础上结合最优投影理论和Nystr9m抽样提出了基于最优投影的半监督谱聚类算法(semi-supervised spectral clustering based ...针对谱聚类算法在解决高维、大数据量的聚类问题时出现的效率不高和准确率明显下降的问题进行了研究,并在此研究基础上结合最优投影理论和Nystr9m抽样提出了基于最优投影的半监督谱聚类算法(semi-supervised spectral clustering based on the optimal projection,SSOP)。该算法从高内聚低耦合的聚类目标出发,根据少量的监督信息计算类内以及类间离散度求得最优投影方向,从而区分各属性的重要程度,在此基础上使用了Nystr9m抽样来降低特征分解时间复杂度以达到在提高聚类算法准确率的基础上提高算法的效率。实验结果表明,该方法能够有效地提高聚类的准确率和效率。展开更多
The spectral clustering method has notable advantages in segmentation.But the high computational complexity and time consuming limit its application in large-scale and dense airborne Light Detection and Ranging(LiDAR)...The spectral clustering method has notable advantages in segmentation.But the high computational complexity and time consuming limit its application in large-scale and dense airborne Light Detection and Ranging(LiDAR)point cloud data.We proposed the Nyström-based spectral clustering(NSC)algorithm to decrease the computational burden.This novel NSC method showed accurate and rapid in individual tree segmentation using point cloud data.The K-nearest neighbour-based sampling(KNNS)was proposed for the Nyström approximation of voxels to improve the efficiency.The NSC algorithm showed good performance for 32 plots in China and Europe.The overall matching rate and extraction rate of proposed algorithm reached 69%and 103%.For all trees located by Global Navigation Satellite System(GNSS)calibrated tape-measures,the tree height regression of the matching results showed an value of 0.88 and a relative root mean square error(RMSE)of 5.97%.For all trees located by GNSS calibrated total-station measures,the values were 0.89 and 4.49%.The method also showed good performance in a benchmark dataset with an improvement of 7%for the average matching rate.The results demonstrate that the proposed NSC algorithm provides an accurate individual tree segmentation and parameter estimation using airborne LiDAR point cloud data.展开更多
文摘针对谱聚类算法在解决高维、大数据量的聚类问题时出现的效率不高和准确率明显下降的问题进行了研究,并在此研究基础上结合最优投影理论和Nystr9m抽样提出了基于最优投影的半监督谱聚类算法(semi-supervised spectral clustering based on the optimal projection,SSOP)。该算法从高内聚低耦合的聚类目标出发,根据少量的监督信息计算类内以及类间离散度求得最优投影方向,从而区分各属性的重要程度,在此基础上使用了Nystr9m抽样来降低特征分解时间复杂度以达到在提高聚类算法准确率的基础上提高算法的效率。实验结果表明,该方法能够有效地提高聚类的准确率和效率。
文摘The spectral clustering method has notable advantages in segmentation.But the high computational complexity and time consuming limit its application in large-scale and dense airborne Light Detection and Ranging(LiDAR)point cloud data.We proposed the Nyström-based spectral clustering(NSC)algorithm to decrease the computational burden.This novel NSC method showed accurate and rapid in individual tree segmentation using point cloud data.The K-nearest neighbour-based sampling(KNNS)was proposed for the Nyström approximation of voxels to improve the efficiency.The NSC algorithm showed good performance for 32 plots in China and Europe.The overall matching rate and extraction rate of proposed algorithm reached 69%and 103%.For all trees located by Global Navigation Satellite System(GNSS)calibrated tape-measures,the tree height regression of the matching results showed an value of 0.88 and a relative root mean square error(RMSE)of 5.97%.For all trees located by GNSS calibrated total-station measures,the values were 0.89 and 4.49%.The method also showed good performance in a benchmark dataset with an improvement of 7%for the average matching rate.The results demonstrate that the proposed NSC algorithm provides an accurate individual tree segmentation and parameter estimation using airborne LiDAR point cloud data.