期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种大样本学习最小二乘支持向量回归模型 被引量:3
1
作者 袁从贵 徐淑琼 张新政 《控制工程》 CSCD 北大核心 2017年第9期1768-1773,共6页
针对最小二乘支持向量回归大样本学习效率偏低的问题,提出了一种最小二乘支持向量回归快速学习算法模型。首先将欧氏距离进行推广,设计了一种支持向量回归高维特征空间相似性测度标准,然后构建了无监督核聚类分析支持向量选择算法,再通... 针对最小二乘支持向量回归大样本学习效率偏低的问题,提出了一种最小二乘支持向量回归快速学习算法模型。首先将欧氏距离进行推广,设计了一种支持向量回归高维特征空间相似性测度标准,然后构建了无监督核聚类分析支持向量选择算法,再通过Nystr?m方法逼近原最小二乘支持向量回归学习问题的解。最后采用Sinc函数和多个数据集测试了模型的性能。实验结果表明,在预测误差没有明显下降的情况下,该模型能克服最小二乘支持向量回归处理大样本学习问题时的内存溢出错误,显著提高其学习效率。 展开更多
关键词 大样本学习 最小二乘支持向量回归 核聚类 Nystr?m逼近
下载PDF
Soft spectral clustering ensemble applied to image segmentation 被引量:6
2
作者 Jianhua Jia (12) jjh163yx@163.com Bingxiang Liu (1) Licheng Jiao (2) 《Frontiers of Computer Science》 SCIE EI CSCD 2011年第1期66-78,共13页
An unsupervised learning algorithm, named soft spectral clustering ensemble (SSCE), is proposed in this paper. Until now many proposed ensemble algorithms cannot be used on image data, even images of a mere 256 &#... An unsupervised learning algorithm, named soft spectral clustering ensemble (SSCE), is proposed in this paper. Until now many proposed ensemble algorithms cannot be used on image data, even images of a mere 256 × 256 pixels are too expensive in computational cost and storage. The proposed method is suitable for performing image segmentation and can, to some degree, solve some open problems of spectral clustering (SC). In this paper, a random scaling parameter and Nystrǒm approximation are applied to generate the individual spectral clusters for ensemble learning. We slightly modify the standard SC algorithm to aquire a soft partition and then map it via a centralized logcontrast transform to relax the constraint of probability data, the sum of which is one. All mapped data are concatenated to form the new features for each instance. Principal component analysis (PCA) is used to reduce the dimension of the new features. The final aggregated result can be achieved by clustering dimension-reduced data. Experimental results, on UCI data and different image types, show that the proposed algorithm is more efficient compared with some existing consensus functions. 展开更多
关键词 spectral clustering (SC) nystrrm approxi-mation centralized logcontrast transform principal component analysis (PCA) ensemble learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部