期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Highly efficient Nb2O5 catalyst for aldol condensation of biomass-derived carbonyl molecules to fuel precursors 被引量:3
1
作者 Yaxuan Jing Yu Xin +2 位作者 Yong Guo Xiaohui Liu Yanqin Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第8期1168-1177,共10页
Aldol condensation is of significant importance for the production of fuel precursors from biomass- derived chemicals and has received increasing attention. Here we report a Nb2O5 catalyst with excellent activity and ... Aldol condensation is of significant importance for the production of fuel precursors from biomass- derived chemicals and has received increasing attention. Here we report a Nb2O5 catalyst with excellent activity and stability in the aldol condensation of biomass-derived carbonyl molecules. It is found that in the aldol condensation of furfural with 4-heptanone, Nb2O5 has obviously superior activity, which is not only better than that of other common solid acid catalysts (ZrO2 and Al2O3), more importantly, but also better than that of solid base catalysts (MgO, CaO, and magnesium- aluminum hydrotalcite). The detailed characterizations by N2 sorption/desorption, NH3-TPD, Py-FTIR and DRIFTS study of acetone adsorption reveal that Nb2O5 has a strong ability to activate the C=O bond in carbonyl molecules, which helps to generate a metal enolate intermediate and undergo the nucleophilic addition to form a new C–C bond. Furthermore, the applicability of Nb2O5 to aldol condensation is extended to other biomass-derived carbonyl molecules and high yields of target fuel precursors are obtained. Finally, a multifunctional Pd/Nb2O5 catalyst is prepared and successfully used in the one-pot synthesis of liquid alkanes from biomass-derived carbonyl molecules by combining the aldol condensation with the sequential hydrodeoxygenation. 展开更多
关键词 Aldol condensation NB2o5 C=o activation Fuel precursor Bio-liquid alkane one-pot process
下载PDF
Chemoselective Transfer Hydrogenation of Cinnamaldehyde over Activated Charcoal Supported Pt/Fe3O4 Catalyst 被引量:1
2
作者 张勇 陈春 +5 位作者 龚万兵 宋杰瑶 苏燕平 张海民 汪国忠 赵惠军 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第4期467-473,I0002,共8页
A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potenti... A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field. 展开更多
关键词 Activated charcoal supported Pt/Fe3o4 catalysts Redox method Transfer hydrogenation Cinnamaldehyde Cinnamyl alcohol
下载PDF
Synthesis of Ni^2+cation modified TS-1 molecular sieve nanosheets as effective photocatalysts for alcohol oxidation and pollutant degradation 被引量:4
3
作者 Imran Khan Xiaoyu Chu +3 位作者 Yanduo Liu Salman Khan Linlu Bai Liqiang Jing 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第10期1589-1602,共14页
lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synt... lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synthesized by a low-temperature hydrothermal method using a tai-lored diquaternary ammonium surfactant as the structure-directing agent.Introducing Ni^2+cationsat the ion-exchange sites of the TS-1 NS framework significantly enhanced its photoactivity in aero-bic alcohol oxidation.The optimized Ni cation-functionalized TS-1 NS(Ni/TS-1 NS)provide impres-sive photoactivity,with a benzyl alcohol(BA)conversion of 78.9%and benzyl aldehyde(BAD)se-lectivity of 98.8%using O as the only oxidant under full light irradiation;this BAD yield is approx-imately six times greater than that obtained for bulk TS-1,and is maintained for five runs.The ex-cellent photoactivity of Ni/TS-1 NS is attributed to the significantly enlarged surface area of thetwo-dimensional morphology TS-1 NS,extra mesopores,and greatly improved charge separation.Compared with bulk TS-1,Ni/TS-1 NS has a much shorter charge transfer distance.Theas-introduced Ni species could capture the photoelectrons to further improve the charge separa-tion.This work opens the way to a class of highly selective,robust,and low-cost titanosilicate mo-lecular sieve-based photocatalysts with industrial potential for selective oxidative transformationsand pollutant degradation. 展开更多
关键词 TS-1 nanosheet Photocatalytic alcohol oxidation Charge separation Ni species as electron capturer o2 activation
下载PDF
Adjusting the local solvation structures and hydrogen bonding networks for stable aqueous batteries with reduced cost 被引量:1
4
作者 Canfu Zhang Binbin Chen +3 位作者 Haoran Cai Renzhi Huang Yingchun Liu Huilin Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期411-419,共9页
Exploring low-cost and effective approaches to extend the potentials of aqueous electrolytes is highly desired.Herein,it is found that the activity of H_(2)O in aqueous electrolytes could be intensively manipulated by... Exploring low-cost and effective approaches to extend the potentials of aqueous electrolytes is highly desired.Herein,it is found that the activity of H_(2)O in aqueous electrolytes could be intensively manipulated by introducing small urea and long-chain polyethylene glycol(PEG)molecules into Li TFSI-H_(2)O electrolyte systems without super salt concentration.The urea and PEG molecules could exclude partial coordinated H_(2)O out of the inner solvation shell of Li_(4) and reconstruct hydrogen-bonding network between H_(2)O and PEG molecules outside the solvation sheaths with restricted H_(2)O activity and extended electrochemical window.The bonding competitions in aqueous electrolytes and their correlation to the electrochemical performance of full cells are studied.When the occurrence probability of H_(2)O around Li_(4)is lower than 40%,stable cycling of 3.1 V LiMn_(2)O_(4)-Li_(4)Ti_(5)O_(12) full cell is achieved,showing 73%capacity retention after 200 cycles at 1 C rate in optimal electrolytes.This work provides new avenues to understand the role of H_(2)O and explore low-cost and effective approaches for the development of nextgeneration aqueous lithium-ion batteries. 展开更多
关键词 Solvation sheath H_(2)o activity Aqueous electrolytes Lithium-ion batteries
下载PDF
Electronic,Magnetic and Photocatalytic Properties in(Fe,Ni)-Codoped SrTiO3 with and without Oxygen Vacancies:a First-principles Study 被引量:1
5
作者 汪月琴 刘银 +1 位作者 张明旭 闵凡飞 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2018年第7期1025-1036,共12页
The enhanced magnetic and photocatalytic properties of(Fe, Ni)-codoped SrTiO3 with and without oxygen vacancies are investigated using the first-principles calculations based on the density functional theory plus U ... The enhanced magnetic and photocatalytic properties of(Fe, Ni)-codoped SrTiO3 with and without oxygen vacancies are investigated using the first-principles calculations based on the density functional theory plus U calculations. It is revealed that the structure phase transition associated with O vacancy imposes significant influence on magnetic and optical properties. The results show that the Ni oxidation state in(Fe, Ni)-codoped SrTiO3 is about 2+, which is different from that of 4+ in Ni monodoped SrTiO3 in previous experimental investigations. The presence of O vacancy leads to a semiconductor-half-metal transition in codoped SrTiO3. The(Fe, Ni)-codoped SrTiO3 without O vacancy produces an enhanced magnetization and induces a giant magnetic moment of 3 μB, while a relatively small magnetic moment of 0.36 μB is generated in(Fe, Ni)-codoped SrTiO3 with O vacancy. The origin of the large enhancement of magnetic moment in(Fe, Ni)-codoped SrTiO3 without O vacancy was ascribed to the reduced hybridization in Fe–O bonds and the enhanced hybridization in Ni–O bonds, which modulated antiferromagnetic spin structure. The dispersion of the conduction bands and valence bands of codoped SrTiO3 is enhanced after codoping, which benefits the photocatalytic performance. Furthermore, the(Fe, Ni)-codoped SrTiO3 shows a remarkable red-shift of absorption spectra edge and induces a strong optical absorption in the visible light region, indicating that it could be taken as a potential candidate for photocatalytic materials. 展开更多
关键词 SRTIo3 electronic structure MAGNETIC PHoToCATALYTIC activity o vacancy
下载PDF
Porous NiCo_2O_4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density 被引量:6
6
作者 Huifang Zhang Dengji Xiao +5 位作者 Qian Li Yuanyuan Ma Shuxia Yuan Lijing Xie Chengmeng Chen Chunxiang Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期195-202,共8页
Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays stru... Recently, binary metal oxides have been considerably researched for energy storage since it can provide higher electrical conductivity and electrochemical activity than single components. Besides, rational arrays structure design can effectively enhance the utilization of active material. In this article, we synthesis a porous NiCo_2O_4 nanowires arrays, which were intimate contact with flexible carbon cloth(CC)by a facile hydrothermal reaction and calcination treatment. The rational array structures of NiCo_2O_4 facilitate the diffusion of electrolyte and effectively increase the utilization of active material. The asobtained NiCo_2O_4@CC electrode exhibits a high capacitance of 1183 mF cm^(-2) and an outstanding capacitance retention of 90.4% after 3000 cycles. Furthermore, a flexible asymmetric supercapacitor(ASC)using NiCo_2O_4@CC as positive electrode and activated carbon cloth(ACC) as negative electrode was fabricated, which delivers a large capacitance of 750 mF cm^(-2)(12.5 F cm^(-3)), a high energy density of 0.24 mWh cm^(-2)(3.91 mWh cm^(-3)), as well as excellent cycle stability under different bending states.These remarkable results suggest that as-assembled NiCo_2O_4@CC//ACC ASC is a promising candidate in flexible energy storage applications. 展开更多
关键词 All solid-stateNiCo2o4 nanowires Carbon cloth Activated carbon cloth Asymmetric supercapacitor
下载PDF
Stable CuO/La_(2)Sn_(2)O_(7) catalysts for soot combustion:Study on the monolayer dispersion behavior of CuO over a La_(2)Sn_(2)O_(7) pyrochlore support 被引量:2
7
作者 Xiaohui Feng Rui Liu +6 位作者 Xianglan Xu Yunyan Tong Shijing Zhang Jiacheng He Junwei Xu Xiuzhong Fang Xiang Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第3期396-408,共13页
To understand the dispersion behavior of metal oxides on composite oxide supports and with the expectation of developing more feasible catalysts for soot oxidation,CuO/La_(2)Sn_(2)O_(7)samples containing varied CuO lo... To understand the dispersion behavior of metal oxides on composite oxide supports and with the expectation of developing more feasible catalysts for soot oxidation,CuO/La_(2)Sn_(2)O_(7)samples containing varied CuO loadings were fabricated and characterized by different techniques and density functional theory calculations.In these catalysts,a spontaneous dispersion of CuO on the La_(2)Sn_(2)O_(7)pyrochlore support formed,having a monolayer dispersion capacity of 1.90 mmol CuO/100 m^(2) La_(2)Sn_(2)O_(7)surface.When loaded below this capacity,CuO exists in a sub-monolayer or monolayer state.X-ray photoelectron spectroscopy(XPS),Raman spectroscopy,and Bader charge and density of states analyses indicate that there are strong interactions between the sub-monolayer/monolayer CuO and the La_(2)Sn_(2)O_(7)support,mainly through the donation of electrons from Cu to Sn at the B-sites of the structure.In contrast,Cu has negligible interactions with La at the A-sites.This suggests that,in composite oxide supports containing multiple metals,the supported metal oxide interacts preferentially with one kind of metal cation in the support.The Raman,in situ diffuse reflectance infrared Fourier transform spectroscopy,and XPS results confirmed the formation of both O2^(-)and O2^(2-)as the active sites on the surfaces of the CuO/La_(2)Sn_(2)O_(7)catalysts,and the concentration of these active species determines the soot combustion activity.The number of active oxygen anions increased with increase in CuO loading until the monolayer dispersion capacity was reached.Above the monolayer dispersion capacity,microsized CuO crystallites formed,and these had a negative effect on the generation of active surface oxygen sites.In summary,a highly active catalyst can be prepared by covering the surface of the La_(2)Sn_(2)O_(7)support with a CuO monolayer. 展开更多
关键词 Cuo/La_(2)Sn_(2)o_(7)catalyst Soot combustion DFT calculations Preferential interaction Monolayer dispersion on pyrochlore support Active o2^(-)and o2^(2-)sites
下载PDF
The role of alkali promoters in enhancing the direct N_2O decomposition reactivity over NiO catalysts 被引量:2
8
作者 Bahaa M. Abu-Zied 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1837-1845,共9页
Direct N2O decomposition has been investigated over bare NiO and a series of its alkali-promoted catalysts. These catalysts were characterized by X-ray diffractometry, X-ray photoelectron spectroscopy (XPS) and fiel... Direct N2O decomposition has been investigated over bare NiO and a series of its alkali-promoted catalysts. These catalysts were characterized by X-ray diffractometry, X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy. XPS analysis revealed that surface nickel is present in three forms: metal particles, NiO and Ni(OH)2. It is suggested that nickel(0) valent atoms are essential for the interaction with N2O molecules at the catalyst surfaces. Bare NiO exhibited a very low N2O decomposition reactivity. However, the alkali-containing catalysts exhibited a marked activity enhancement. 展开更多
关键词 N2o decomposition Greenhouse gas NioAlkali-promotion Activity enhancement
下载PDF
Preparation and characterization of H_4SiW_(12)O_(40)@MIL-100(Fe) and its catalytic performance for synthesis of 4,4'-MDA 被引量:3
9
作者 Yunhuan Kong Xiaomeng Cheng +2 位作者 Hualiang An Xinqiang Zhao Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第2期330-336,共7页
The catalytic performance of co mmonly used heteropolyacids (H3PW12O40, H4SiW12O40 and H3PMO12O40 synthesis of 4,4'-methylenedianiline (4,4'-MDA) from aniline and formaldehyde was evaluated and the result showed ... The catalytic performance of co mmonly used heteropolyacids (H3PW12O40, H4SiW12O40 and H3PMO12O40 synthesis of 4,4'-methylenedianiline (4,4'-MDA) from aniline and formaldehyde was evaluated and the result showed that H4SiW12O40 with moderate acid strength exhibited the best catalytic performance. Then HaSiW12O40@MIL-100(Fe) was prepared by encapsulating H4SiW12O40 within the pores of MIL-100(Fe) to facilitate its recovery and reuse. The prepared H4SiW12O40@MIL-100(Fe) was characterized by means of FT-IR, N2 adsorption-desorption, XRD, TG and then the catalytic performance was evaluated. The result showed that H4SiW12O40 was highly dispersed in the pores of MIL-100(Fe), and both the Keggin structure of HaSiW12O40 and the crystal skeleton structure of MIL-100(Fe) could be effectively/preserved. Furthermore, H4SiW12O40@ MIL-100(Fe) showed excellent catalytic performance under the following reaction conditions: a molar ratio of aniline to formaldehyde = 5, a mass ratio of catalyst to formaldehyde = 1.2, a reaction temperature of 120 ℃ and a reaction time of 6 h. Under the above reaction conditions, the conversion of aniline was 41.1%, and the yield and selectivity of 4,4'-MDA were 81,6% and 79.2%, respectively. Unfortunately, an appreciable loss in the catalytic activity of the recovered H4SiW12O40@MIL-100(Fe) was observed because of the blocking of the pores and the change of the acidity resulted from the adsorption of alkaline organics such as aniline and 4,4'-MDA. The adsorbed alkaline organics could be cleaned up when the recovered catalyst was washed by methanol and DMF. Then the catalyst was effectively reused up to three cycles without much loss in its activity. 展开更多
关键词 H4SiW12 o40@MIL- 100 Fe )Catalyst activation 4 4'-Methylenedianilinc synthesis Mukiphase reaction Stability
下载PDF
Superoxide Complex [W_4O_(12)(O_2^-)]:A Theoretical Study
10
作者 王彬 张贤慧 +1 位作者 黄昕 章永凡 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2008年第8期990-994,共5页
Extensive DFT calculations are performed to optimize the geometric structures of O-rich tungsten oxide clusters, to simulate the PES spectra, and to analyze the chemical bonding. The ground-state structure of W4O14^- ... Extensive DFT calculations are performed to optimize the geometric structures of O-rich tungsten oxide clusters, to simulate the PES spectra, and to analyze the chemical bonding. The ground-state structure of W4O14^- is best considered as W4O12(O2^-), containing a side-on bound superoxide ligand. The current study indicates that the extra electron in W4O12^- is capable of activating dioxygen by non-dissociative electron transfer (W 5d → O2 π^*), and the anionic clusters can be viewed as models for reduced defect sites on tungsten oxide surfaces for the chemisorption of O2. 展开更多
关键词 tungsten oxide superoxide density functional theory o2 activation
下载PDF
Mean Transverse Energy of Electrons Emitted from GaAs/GaAlAs Transmission Photocathode
11
作者 YAN Jin-liang,ZHU Chang-chun (School of Electr. & Inform.Eng.,Xi’an Jiaotong University,Xi’an 710049,CHN) 《Semiconductor Photonics and Technology》 CAS 1999年第3期147-151,共5页
A GaAs/GaAlAs transmission photocathode surface topography is examined with a scanning electron microscope(SEM) in the secondary emission mode.The contributions of photocathode surface topography to mean transverse en... A GaAs/GaAlAs transmission photocathode surface topography is examined with a scanning electron microscope(SEM) in the secondary emission mode.The contributions of photocathode surface topography to mean transverse energy of electrons emitted from the photocathode are calculated. Measurement is made of the variation of mean transverse emission energy with activating time during the course of activation. It is shown that the scattering of the photoelectrons in the Cs/O layer is the primary cause of the unexpectant high values of the mean transverse energy of electrons emitted from GaAs/GaAlAs photocathode. A method is proposed for the reduction of the mean transverse energy of electrons emitted from the photocathode. 展开更多
关键词 Cs/o Activating Layer GaAs/GaAlAs Photocathode Mean Transverse Emission Energy Surface Topography CLC number:TN383.4 Document code:A
下载PDF
THE ELECTROCATALYTIC ACTIVITY OF NiCo2O4 FOR THE OXYGEN EVOLUTION REACTION
12
作者 Peng Li CHENG Jian Min ZHANG Qiu Zhi SHI Chang Chun YANG Department of Chemistry,Zhengzhou University,Zhengzhou,450052 《Chinese Chemical Letters》 SCIE CAS CSCD 1993年第9期821-824,共4页
A spinel oxide NiCo204 prepared by thermal decomposition is of very high activity for the oxygen evolution reaction(OER)in alkaline solution.The oxygen evolution overpotential on NiCo204 is 0.252-0.262V in 10 M NaOH s... A spinel oxide NiCo204 prepared by thermal decomposition is of very high activity for the oxygen evolution reaction(OER)in alkaline solution.The oxygen evolution overpotential on NiCo204 is 0.252-0.262V in 10 M NaOH solution at 343K and current density 100 mAcm^(-2). 展开更多
关键词 oEA IM Co oER THE ELECTRoCATALYTIC ACTIVITY oF NiCo2o4 FoR THE oXYGEN EVoLUTIoN REACTIoN NI
下载PDF
Template-assisted synthesis of hierarchically porous Co3O4 with enhanced oxygen evolution activity
13
作者 Lan Yao Hexiang Zhong +2 位作者 Chengwei Deng Xianfeng Li Huamin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期153-157,共5页
Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness o... Oxygen evolution reaction(OER) is one of the most important reactions in the energy storage devices such as metal–air batteries and unitized regenerative fuel cells(URFCs). However, the kinetically sluggishness of OER and the high prices as well as the scarcity of the most active precious metal electrocatalysts are the major bottleneck in these devices. Developing low-cost non-precious metal catalysts with high activity and stability for OER is highly desirable. A facile, in situ template method combining the dodecyl benzene sulfuric acid sodium(SDBS) assisted hydrothermal process with subsequent high-temperature treatment was developed to prepare porous Co3O4 with improved surface area and hierarchical porous structure as precious catalysts alternative for oxygen evolution reaction(OER). Due to the unique structure, the as-prepared catalyst shows higher electrocatalytic activity than Co3O4 prepared by traditional thermal-decomposition method(noted as Co3O4-T) and commercial IrO2 catalyst for OER in 0.1M KOH aqueous solution. Moreover, it displays improved stability than Co3O4-T. The results demonstrate a highly efficient, scalable, and low cost method for developing highly active and stable OER electrocatalysts in alkaline solutions. 展开更多
关键词 oxygen evolution reaction Co3o4 Non-precious metal catalysts High activity High stability
下载PDF
Efficient selective activation of sorbitol C–O bonds over C–C bonds on CoGa(221)generated by lattice-induction strategy
14
作者 Ying Kong Yanru Zhu +5 位作者 Zhe An Jian Zhang Xin Shu Hongyan Song Qipeng Yuan Jing He 《Nano Research》 SCIE EI CSCD 2023年第5期6200-6211,共12页
Sorbitol is a primary platform compound in the conversion of cellulose.The conversion of sorbitol to C_(6) hydrocarbons requires a complete cleavage of C–O bonds and meanwhile the inhibition of C–C cleavage.Here,we ... Sorbitol is a primary platform compound in the conversion of cellulose.The conversion of sorbitol to C_(6) hydrocarbons requires a complete cleavage of C–O bonds and meanwhile the inhibition of C–C cleavage.Here,we demonstrated an efficient selective cleavage of C–O over C–C bond on the(221)facet of supported CoGa.A selectivity of 94%to C_(6) hydrocarbon with conversion of 97%has been achieved.The selective C–O cleavage was demonstrated by tuning the exposed facet as(221)or(110).The supported CoGa was prepared simply by reduction of Co and Ga-containing layered double hydroxides(CoZnGaAl-LDHs),the exposed facets of CoGa crystallites were controlled by tailoring the temperature-programmed rate in the reduction.By reducing CoZnGaAl-LDHs,CoGa(221)was exposed with a temperature-programmed rate of 5℃/min under the induction of ZnO lattice,while CoGa(110)was exposed with a rate of 10℃/min. 展开更多
关键词 biomass supported CoGa facet exposure preferred C–o activation liquid hydrocarbons
原文传递
Accelerating solar driven CO_(2) reduction via sulfur-doping boosted water dissociation and proton transfer
15
作者 Ke Yan Liang Chen +5 位作者 Yangguang Hu Ting Wang Cong Chen Chao Gao Youju Huang Benxia Li 《Nano Research》 SCIE EI CSCD 2024年第3期1056-1065,共10页
Exploring efficient photocatalysts for solar driven CO_(2) reduction with water(H_(2)O)as a proton donor is highly imperative but remains a great challenge because the synchronous enhancement of CO_(2) activation,H_(2... Exploring efficient photocatalysts for solar driven CO_(2) reduction with water(H_(2)O)as a proton donor is highly imperative but remains a great challenge because the synchronous enhancement of CO_(2) activation,H_(2)O dissociation and proton transfer is hardly achieved on a photocatalyst.Particularly,the sluggish H_(2)O dissociation impedes the photocatalytic CO_(2) reduction reaction involving multiple proton–electron coupling transfer processes.Herein,a sulfur-doped BiOCl(S-BiOCl)photocatalyst with abundant oxygen vacancies(OV)is developed,which exhibits broadband-light harvesting across solar spectrum and distinct photothermal effect due to photochromism.For photocatalytic CO_(2) reduction with H_(2)O in a gas–solid system,the high CO yield of 49.76μmol·g_(cat)^(-1)·h^(-1) with 100%selectivity is achieved over the S-BiOCl catalyst under a simulated sunlight.The H_(2)O-assisted CO_(2) reduction reaction on S-BiOCl catalyst is triggered by photocatalysis and the photothermal heating further enhances the reaction rate.The kinetic isotope experiments indicate that the sluggish H_(2)O dissociation affects the whole photocatalytic CO_(2) reduction process.The presence of oxygen vacancies promotes the adsorption and activation of H_(2)O and CO_(2),and the doped S sites play a crucial role in boosting H_(2)O dissociation and accelerating the dynamic migration of hydrogen species.As a result,the ingenious integration of OV defects,S sites and photothermal effect in S-BiOCl catalyst conjointly contributes to the significant improvement in photocatalytic CO_(2) reduction performance. 展开更多
关键词 BioCl sulfur doping photocatalytic Co_(2)reduction H_(2)o activation proton feeding
原文传递
Hydrogenation of molecular oxygen to hydroperoxyl: An alternative pathway for O2 activation on nanogold catalysts 被引量:5
16
作者 Chun-Ran Chang Zheng-Qing Huang Jun Li 《Nano Research》 SCIE EI CAS CSCD 2015年第11期3737-3748,共12页
Activation of molecular O2 is the most critical step in gold-catalyzed oxidation reactions; however, the underlying mechanisms of this process remain under debate. In this study, we propose an alternative O2 activatio... Activation of molecular O2 is the most critical step in gold-catalyzed oxidation reactions; however, the underlying mechanisms of this process remain under debate. In this study, we propose an alternative O2 activation pathway with the assistance of hydrogen-containing substrates using density functional theory. It is demonstrated that the co-adsorbed H-containing substrates (R-H) not only enhance the adsorption of O2, but also transfer a hydrogen atom to the adjacent O2, leading to O2 activation by its transformation to a hydroperoxyl (OOH) radical species. The activation barriers of the H-transfer from 16 selected R-H compounds (H2O, CH3OH, NH2CHCOOH, CH3CH=CH2, (CH3)2SiH2, etc.) to the co-adsorbed O2 are lower than 0.50 eV in most cases, indicating the feasibility of the activation of O2 via OOH under mild conditions. The formed OOH oxidant, with an increased O-O bond length of -1.45 A, either participates directly in oxidation reactions through the end-on oxygen atom, or dissociates into atomic oxygen and hydroxyl (OH) by crossing a fairly low energy barrier of 0.24 eV. Using CO oxidation as a probe, we have found that OOH has superior activity than activated O2 and atomic oxygen. This study reveals a new pathway for the activation of O2, and may provide insight into the oxidation catalysis of nanosized gold. 展开更多
关键词 o2 activation gold cluster ADSoRPTIoN DISSoCIATIoN hydroperoxyl
原文传递
Characterization of bacterial community and iron corrosion in drinking water distribution systems with O3-biological activated carbon treatment 被引量:6
17
作者 Xueci Xing Haibo Wang +1 位作者 Chun Hu Lizhong Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第7期192-204,共13页
Bacterial community structure and iron corrosion were investigated for simulated drinking water distribution systems(DWDSs) composed of annular reactors incorporating three different treatments: ozone, biologically... Bacterial community structure and iron corrosion were investigated for simulated drinking water distribution systems(DWDSs) composed of annular reactors incorporating three different treatments: ozone, biologically activated carbon and chlorination(O3-BAC-Cl2);ozone and chlorination(O3-Cl2); or chlorination alone(Cl2). The lowest corrosion rate and iron release, along with more Fe3O4 formation, occurred in DWDSs with O3-BAC-Cl2 compared to those without a BAC filter. It was verified that O3-BAC influenced the bacterial community greatly to promote the relative advantage of nitrate-reducing bacteria(NRB)in DWDSs. Moreover, the advantaged NRB induced active Fe(III) reduction coupled to Fe(II) oxidation, enhancing Fe3O4 formation and inhibiting corrosion. In addition, O3-BAC pretreatment could reduce high-molecular-weight fractions of dissolved organic carbon effectively to promote iron particle aggregation and inhibit further iron release. Our findings indicated that the O3-BAC treatment, besides removing organic pollutants in water, was also a good approach for controlling cast iron corrosion and iron release in DWDSs. 展开更多
关键词 Bacterial community Nitrate-reducing bacteria(NRB) o3-biological activated carbon(o3-BAC) Drinking water distribution systems (DWDSs) Corrosion inhibition Iron release
原文传递
The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic(A2O) nitrogen and phosphorus removal reactor using Illumina sequencing 被引量:22
18
作者 Mei Tian Fangqing Zhao +5 位作者 Xin Shen Kahou Chu Jinfeng Wang Shuai Chen Yan Guo Hanhu Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第9期181-190,共10页
The anaerobic/anoxic/oxic(A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge ... The anaerobic/anoxic/oxic(A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge from a municipal sewage treatment plant.With more than 530,000 clean reads from different taxa and metabolic categories, the metagenome results allow us to gain insight into the functioning of the biological community of the A2O sludge. There are 51 phyla and nearly 900 genera identified from the A2O activated sludge ecosystem. Proteobacteria, Bacteroidetes, Nitrospirae and Chloroflexi are predominant phyla in the activated sludge, suggesting that these organisms play key roles in the biodegradation processes in the A2O sewage treatment system.Nitrospira, Thauera, Dechloromonas and Ignavibacterium, which have abilities to metabolize nitrogen and aromatic compounds, are most prevalent genera. The percent of nitrogen and phosphorus metabolism in the A2O sludge is 2.72% and 1.48%, respectively. In the current A2O sludge, the proportion of Candidatus Accumulibacter is 1.37%, which is several times more than that reported in a recent study of A2O sludge. Among the four processes of nitrogen metabolism, denitrification related genes had the highest number of sequences(76.74%), followed by ammonification(15.77%), nitrogen fixation(3.88%) and nitrification(3.61%). In phylum Planctomycetes, four genera(Planctomyces, Pirellula, Gemmata and Singulisphaera) are included in the top 30 abundant genera, suggesting the key role of ANAMMOX in nitrogen metabolism in the A2O sludge. 展开更多
关键词 Metagenome Biodiversity Anaerobic/anoxic/oxic(A2o Activated sludge Nitrogen metabolism ANAMMoX
原文传递
Low temperature Si/Si wafer direct bonding using a plasma activated method 被引量:4
19
作者 Dong-ling LI Zheng-guo SHANG +1 位作者 Sheng-qiang WANG Zhi-yu WEN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2013年第4期244-251,共8页
Manufacturing and integration of micro-electro-mechanical systems (MEMS) devices and integrated circuits (ICs) by wafer bonding often generate problems caused by thermal properties of materials. This paper present... Manufacturing and integration of micro-electro-mechanical systems (MEMS) devices and integrated circuits (ICs) by wafer bonding often generate problems caused by thermal properties of materials. This paper presents a low temperature wafer direct bonding process assisted by 02 plasma. Silicon wafers were treated with wet chemical cleaning and subsequently activated by 02 plasma in the etch element of a sputtering system. Then, two wafers were brought into contact in the bonder followed by annealing in N2 atmosphere for several hours. An infrared imaging system was used to detect bonding defects and a razor blade test was carried out to determine surface energy. The bonding yield reaches 90%--95% and the achieved surface energy is 1.76 J/m2 when the bonded wafers are annealed at 350 ~C in N2 atmosphere for 2 h. Void formation was systematically observed and eli-mination methods were proposed. The size and density of voids greatly depend on the annealing temperature. Short O2 plasma treatment for 60 s can alleviate void formation and enhance surface energy. A pulling test reveals that the bonding strength is more than 11.0 MPa. This low temperature wafer direct bonding process provides an efficient and reliable method for 3D integration, system on chip, and MEMS packaging. 展开更多
关键词 Low temperature Wafer direct bonding o2 plasma activation Surface energy Void formation
原文传递
Predictable site-selective radical fluorination of tertiary ethers 被引量:2
20
作者 Junyang Ma Wentao Xu Jin Xie 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第2期187-191,共5页
In this communication,we disclose the first example of metal-free and site-selective radical fluorination of readily available tertiary alkyl ethers,enabled by synergistic photocatalysis and organocatalysis.This catal... In this communication,we disclose the first example of metal-free and site-selective radical fluorination of readily available tertiary alkyl ethers,enabled by synergistic photocatalysis and organocatalysis.This catalytic combination allows for exclusive fluorination of tertiary C–O bonds under mild conditions even in the presence of competing reaction sites.The excellent functional group tolerance affords valuable access to sterically hindered alkyl fluorides through late-stage modification of complex molecules.The successful use of tertiary alkyl ethers in radical fluorination enhances the structural diversity of aliphatic fluorides that can be derived from naturally abundant alcohols. 展开更多
关键词 cooperative catalysis C–o bond activation radical fluorination polarity-matching effect UMPoLUNG
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部