Deactivation mechanism of Cr-Al2O3catalyst and the interaction of Cr-A1 in the dehydrogenation of isobutane, as well as the nature of the catalytic active center, were studied using XRD, SEM, XPS, H2-TPR, isobutane-TP...Deactivation mechanism of Cr-Al2O3catalyst and the interaction of Cr-A1 in the dehydrogenation of isobutane, as well as the nature of the catalytic active center, were studied using XRD, SEM, XPS, H2-TPR, isobutane-TPR and TPO techniques. The results revealed that the deactivation of Cr-Al2O3 catalyst was mainly caused by carbon deposition on its surface. The Cr3+ ion could not be reduced by hydrogen but could be reduced to Cr2+ by hydrocarbons and monoxide carbon. The active center for isobutane dehydrogenation could be Cr2+/Cr3+ produced from Cr6+ by the on line reduction of hydrocarbon and carbon monoxide. The binding energy of Al3+ was strongly affected by the state of chromium cations in the catalysts.展开更多
An environmentally friendly Mn‐oxide‐supported metal‐organic framework(MOF),Mn3O4/ZIF‐8,was successfully prepared using a facile solvothermal method,with a formation mechanism proposed.The composite was characteri...An environmentally friendly Mn‐oxide‐supported metal‐organic framework(MOF),Mn3O4/ZIF‐8,was successfully prepared using a facile solvothermal method,with a formation mechanism proposed.The composite was characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron microscopy,and Fourier‐transform infrared spectroscopy.After characterization,the MOF was used to activate peroxymonosulfate(PMS)for degradation of the refractory pollutant rhodamine B(RhB)in water.The composite prepared at a0.5:1mass ratio of Mn3O4to ZIF‐8possessed the highest catalytic activity with negligible Mn leaching.The maximum RhB degradation of approximately98%was achieved at0.4g/L0.5‐Mn/ZIF‐120,0.3g/L PMS,and10mg/L initial RhB concentration at a reaction temperature of23°C.The RhB degradation followed first‐order kinetics and was accelerated with increased0.5‐Mn/ZIF‐120and PMS dosages,decreased initial RhB concentration,and increased reaction temperature.Moreover,quenching tests indicated that?OH was the predominant radical involved in the RhB degradation;the?OH mainly originated from SO4??and,hence,PMS.Mn3O4/ZIF‐8also displayed good reusability for RhB degradation in the presence of PMS over five runs,with a RhB degradation efficiency of more than96%and Mn leaching of less than5%for each run.Based on these findings,a RhB degradation mechanism was proposed.展开更多
The static O-H bond parameters including O-H bond length, O-H charge difference, O-H Mulliken population and O-H bond stretching force constant (k) for 17 phenols were calculated by ab initio method HF/6-31G**. In com...The static O-H bond parameters including O-H bond length, O-H charge difference, O-H Mulliken population and O-H bond stretching force constant (k) for 17 phenols were calculated by ab initio method HF/6-31G**. In combination with the O-H bond dissociation enthalpies (BDE) of the phenols determined by experiment, it was found that there were poor correlationships between the static O-H bond parameters and O-H BDE. Considering the good correlationship bt tween O-H BDE and logarithm of free radical scavenging rate constant for phenolic antioxidant, it is reasonable to believe that the ineffectiveness of static O-H bond parameters in characterizing antioxidant activity arises from the fact that they cannot measure the O-H BDE.展开更多
Eriochrome black T and Nitrosulfophenol S were advocated as the chemical models of carcinogenic non-aminoazo compounds. The main products of their oxidative cleavage in horseradish peroxidase/H2O2 system was identifie...Eriochrome black T and Nitrosulfophenol S were advocated as the chemical models of carcinogenic non-aminoazo compounds. The main products of their oxidative cleavage in horseradish peroxidase/H2O2 system was identified as the benezenediazonium ion, the ultimate carcinogens, which could bind to DNA. The reaction conditions were investigated preliminarily. Some inhibitors and inducers of the reaction were discovered.展开更多
A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potenti...A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.展开更多
BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy compos...BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy composites were investigated by scanning electron microscopy (SEM) and analytical transmission electron microscopy (TEM). It was found that the complicated chemical reactions and diffusion processes happened in the interface area between BN-layer and Ni25.8A19.6Ta8.3 during the hot pressing at 1 200-1 400 ℃. A continuous AlN-layer was formed at the interface due to the reaction between NiAl and BN. At the same time, Cr diffused extensively into the BN-layer and reacted with boron to form Cr boride precipitates (CrsB3). In addition, a few particles of Ta-rich phase were also precipitated in NiAl matrix near the interface.展开更多
The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditi...The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditions.The photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 or SiO2@Fe3O4nanoparticles or coordinated with an axial azide ligand was also investigated.The results demonstrated that the photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 was higher than that loaded on SiO2@Fe3O4.The kinetic curves of RhB degradation in aqueous solutions at different pH indicated the pseudo first-order kinetics of the reaction.The highest degradation rate for CoPz(BuS)8 loaded Al2O3 at pH = 4 after 160 min was 84.6%.However,the advantages of easier separation and recycling as well as the ability to terminate the reaction at any time for the CoPz(BuS)8 loaded SiO2@Fe3O4 cannot be ignored.When electron-rich NaN3 was coordinated with CoPz(BuS)8 as an axial ligand and loaded on Al2O3,the resulting catalyst produced more active oxygen species such as O2^- and HO· to promote the quicker degradation of RhB than that by the other catalysts.For the N3-coordinated CoPz(BuS)8 loaded on Al2O3,the reactions at pH = 4 and 7 distinctly deviated from first-order kinetics,and the degradation rate reached 77.6%after 80 min at pH = 4.展开更多
This paper reports a study on the reconstruction of broken Si O Si bonds in iron ore tailings (IOTs) in concrete. Limestone and IOTs were used to investigate the influence of different types of coarse aggregates on th...This paper reports a study on the reconstruction of broken Si O Si bonds in iron ore tailings (IOTs) in concrete. Limestone and IOTs were used to investigate the influence of different types of coarse aggregates on the compressive strengths of concrete samples. The dif- ferences in interfacial transition zones (ITZs) between aggregate and paste were analyzed by scanning electron microscopy (SEM) and ener- gy-dispersive spectroscopy (EDS). Meanwhile, X-ray diffraction (XRD) and infrared spectroscopy (IR) were used to study microscopic changes in limestone and IOTs powders in a simple alkaline environment that simulated cement. The results show that the compressive strengths of IOTs concrete or paste are higher than those of limestone concrete or paste under identical conditions. The Ca/Si atom ratios in the ITZs of IOTs con- crete samples are lower than those of limestone concrete;the diffraction peak of the calcium silicate phase at 2θ = 29.5°, as well as the bands of Si O bonds shifting to lower wavenumbers, indicates reconstruction of the broken Si-O-Si bonds on the surfaces of IOTs with Ca(OH)2.展开更多
Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing ...Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing Fe3O4 NPs with average diameters of 11, 20, and 150 nm, we found that the catalytic activity increases with the reduced nanoparticle size. The electrochemical method to characterize the catalytic activity of Fe3O4 NPs using the response currents of the reaction product and substrate was also developed.展开更多
In this paper,a novel copper-based catalyst for FCC gasoline improving the ability of removal the sulfur and avoiding the loss of the octane number from olefin saturation by reactive adsorption desulfurization(RADS) w...In this paper,a novel copper-based catalyst for FCC gasoline improving the ability of removal the sulfur and avoiding the loss of the octane number from olefin saturation by reactive adsorption desulfurization(RADS) was investigated.The series of Cu/Zn O-Al_2 O_3 catalysts were characterized by X-ray powder diffraction(XRD),N_2 adsorption analysis and temperature-programmed reduction(TPR) studies,X-ray photoelectron spectroscopy(XPS),scanning electron microscope(SEM) and transmission electron microscopy(TEM).The experiment results showed that the catalysts had an optimum desulfurization ability with copper loading 6 wt%,which the sulfur contents of product decreased less than 10 μg/g and olefin contents decreased from 16.19% to 14.14% for the long period operation.The appropriate Cu loading content could lead to the high active and low apparent activation energy(E_a).Therefore,the Cu-based catalyst may become a novel catalyst for second-generation for reactive adsorption desulfurization,which achieves the high desulfurization active and low olefins saturation to satisfy the upgrading the product.展开更多
In order to achieve effective, economic, and easily achievable photocatalyst for the degradation of dye methyl orange(MeO), ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites were prepared by simple chemical synthetic...In order to achieve effective, economic, and easily achievable photocatalyst for the degradation of dye methyl orange(MeO), ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites were prepared by simple chemical synthetic route in the aqueous medium. Phase, crystallinity, surface structure and surface behavior of the synthesized materials were determined by X-ray diffraction(XRD) and Brunauer-Emmett-Teller analysis(BET) techniques. XRD study established formation of good crystalline ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanomaterials. By using intensity of constituent peaks in the XRD pattern, the compositions of nanocomposites were determined. From the BET analysis, the prepared materials show mesoporous behavior, type Ⅳ curves along with H4 hysteresis. The ZnO/ZnS/α-Fe2O3 composite shows the largest surface area among three materials. From the UV-visible spectra, the band gap energy of the materials was determined. Photoluminescence spectra(PL) were used to determine the emission behavior and surface defects in the materials. In PL spectra, the intensity of UV peak of ZnO/ZnS is lowered than that of ZnO while in case of ZnO/ZnS/α-Fe2O3, the intensity further decreased. The visible emission spectra of ZnO/ZnS increased compared with ZnO while in ZnO/ZnS/α-Fe2O3 it is further increased compared with ZnO/ZnS. The as-synthesized materials were used as photocatalysts for the degradation of dye MeO. The photo-degradation data revealed that the ZnO/ZnS/α-Fe2O3 is the best photocatalyst among three specimens for the degradation of dye MeO. The decrease of intensity of UV emission peak and the increase of intensity of visible emission cause the decrease of recombination of electrons and holes which are ultimately responsible for the highest photocatalytic activity of ZnO/ZnS/α-Fe2O3.展开更多
A novel fluorimetric method for determination of laccase activity in organic solvents is proposed, based on the oxidation ofo-phenylenediamine (1,2-diaminobenzene, OPDA) catalyzed by laccase yielding 2,3-diaminophenaz...A novel fluorimetric method for determination of laccase activity in organic solvents is proposed, based on the oxidation ofo-phenylenediamine (1,2-diaminobenzene, OPDA) catalyzed by laccase yielding 2,3-diaminophenazine. The optimal conditions for laccase in organic media areT=55°C, pH=6.5, 1.0×10?2mol/L OPDA, 1.25 mL ethanol, 1.25 mL 1,4-dioxane and 1.25 mL acetone. The linear range of the method proposed in ethanol, 1,4-dioxane and acetone media were 0.44–19.33, 0.11–20.85, 0.38–21.05 U with the detection limit of 0.088, 0.022, 0.076 U, respectively. The proposed method has been applied to the analysis of laccase activity of real samples with more accurate and sensitive than that of the previous method reported.展开更多
In order to develop high-performance diamond wheels,the vitrified bond with different contents of Li2O addition and corresponding diamond composites were prepared.The experimental results show that the addition of a s...In order to develop high-performance diamond wheels,the vitrified bond with different contents of Li2O addition and corresponding diamond composites were prepared.The experimental results show that the addition of a small content of Li2O leads the formation of the mullite phase in vitrified bond.When the Li2O content is 3wt%,the mullite content in the vitrified bond reaches the maximum.Whereas,the vitrified bond turns into a pure glass phase when the Li2O content further increases to 5wt%.The softening temperature of vitrified bond,wetting angle between the vitrified bond and the diamond film decrease with the increasing of the Li2O content.The softening point of the vitrified bond with 5wt% Li2O is 537 ℃ and the contact angle is 32°,which are 44 ℃ and 44° lower than those of the sample without Li2O.The CTE (coefficient of thermal expansion),the flexural strength and hardness of the diamond composite sample first increase and then decrease with the increasing of the Li2O content.When the Li2O addition is 3wt%,the flexural strength and hardness of the composites reaches the maximum values of 93 MPa and 98 HRB,respectively,which are 43.1% and 12.6% higher than those of the sample without Li2O.展开更多
基金supported by the Natural Science Foundation of Shandong Provence of China(ZR2013BM008)
文摘Deactivation mechanism of Cr-Al2O3catalyst and the interaction of Cr-A1 in the dehydrogenation of isobutane, as well as the nature of the catalytic active center, were studied using XRD, SEM, XPS, H2-TPR, isobutane-TPR and TPO techniques. The results revealed that the deactivation of Cr-Al2O3 catalyst was mainly caused by carbon deposition on its surface. The Cr3+ ion could not be reduced by hydrogen but could be reduced to Cr2+ by hydrocarbons and monoxide carbon. The active center for isobutane dehydrogenation could be Cr2+/Cr3+ produced from Cr6+ by the on line reduction of hydrocarbon and carbon monoxide. The binding energy of Al3+ was strongly affected by the state of chromium cations in the catalysts.
基金supported by the National Key Research and Development Program of China (2016YFB0700504)~~
文摘An environmentally friendly Mn‐oxide‐supported metal‐organic framework(MOF),Mn3O4/ZIF‐8,was successfully prepared using a facile solvothermal method,with a formation mechanism proposed.The composite was characterized using X‐ray diffraction,scanning electron microscopy,transmission electron microscopy,X‐ray photoelectron microscopy,and Fourier‐transform infrared spectroscopy.After characterization,the MOF was used to activate peroxymonosulfate(PMS)for degradation of the refractory pollutant rhodamine B(RhB)in water.The composite prepared at a0.5:1mass ratio of Mn3O4to ZIF‐8possessed the highest catalytic activity with negligible Mn leaching.The maximum RhB degradation of approximately98%was achieved at0.4g/L0.5‐Mn/ZIF‐120,0.3g/L PMS,and10mg/L initial RhB concentration at a reaction temperature of23°C.The RhB degradation followed first‐order kinetics and was accelerated with increased0.5‐Mn/ZIF‐120and PMS dosages,decreased initial RhB concentration,and increased reaction temperature.Moreover,quenching tests indicated that?OH was the predominant radical involved in the RhB degradation;the?OH mainly originated from SO4??and,hence,PMS.Mn3O4/ZIF‐8also displayed good reusability for RhB degradation in the presence of PMS over five runs,with a RhB degradation efficiency of more than96%and Mn leaching of less than5%for each run.Based on these findings,a RhB degradation mechanism was proposed.
文摘The static O-H bond parameters including O-H bond length, O-H charge difference, O-H Mulliken population and O-H bond stretching force constant (k) for 17 phenols were calculated by ab initio method HF/6-31G**. In combination with the O-H bond dissociation enthalpies (BDE) of the phenols determined by experiment, it was found that there were poor correlationships between the static O-H bond parameters and O-H BDE. Considering the good correlationship bt tween O-H BDE and logarithm of free radical scavenging rate constant for phenolic antioxidant, it is reasonable to believe that the ineffectiveness of static O-H bond parameters in characterizing antioxidant activity arises from the fact that they cannot measure the O-H BDE.
文摘Eriochrome black T and Nitrosulfophenol S were advocated as the chemical models of carcinogenic non-aminoazo compounds. The main products of their oxidative cleavage in horseradish peroxidase/H2O2 system was identified as the benezenediazonium ion, the ultimate carcinogens, which could bind to DNA. The reaction conditions were investigated preliminarily. Some inhibitors and inducers of the reaction were discovered.
基金This work is supported by the National Natural Science Foundation of China (No.51372248, No.51432009 and No.51502297), Instrument Developing Project of the Chinese Academy of Sciences (No.yz201421), the CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, China.
文摘A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field.
基金Project (10972190) supported by the National Natural Science Foundation of China Projects (09A089, 08C207) supported by the Scientific Research Fund of Hunan Provincial Education Department,ChinaProject (2010FJ3132) supported by the Planned Science and Technology Project of Hunan Province,China
文摘BN coated A1203 fibre-reinforced NiAl-alloy composites were fabricated by hot pressing at 1 200-1 400 ℃, and the interracial microstructure and chemical stability of BN coated Al2O3 fibre-reinforced NiAl-alloy composites were investigated by scanning electron microscopy (SEM) and analytical transmission electron microscopy (TEM). It was found that the complicated chemical reactions and diffusion processes happened in the interface area between BN-layer and Ni25.8A19.6Ta8.3 during the hot pressing at 1 200-1 400 ℃. A continuous AlN-layer was formed at the interface due to the reaction between NiAl and BN. At the same time, Cr diffused extensively into the BN-layer and reacted with boron to form Cr boride precipitates (CrsB3). In addition, a few particles of Ta-rich phase were also precipitated in NiAl matrix near the interface.
基金supported by National Natural Science Foundation of China (20977115, 21272281)Natural Science Foundation of Hubei Province (2014CFB919)the Science and Technology Plan Innovation Team of Wuhan City (2015070504020220)~~
文摘The photocatalytic activity of cobalt octakis(butylthio) porphyrazine(CoPz(BuS)8) was assessed through photodegradation of the dye rhodamine B(RhB) in water under irradiation with a Xe lamp and aerated conditions.The photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 or SiO2@Fe3O4nanoparticles or coordinated with an axial azide ligand was also investigated.The results demonstrated that the photocatalytic activity of CoPz(BuS)8 loaded on Al2O3 was higher than that loaded on SiO2@Fe3O4.The kinetic curves of RhB degradation in aqueous solutions at different pH indicated the pseudo first-order kinetics of the reaction.The highest degradation rate for CoPz(BuS)8 loaded Al2O3 at pH = 4 after 160 min was 84.6%.However,the advantages of easier separation and recycling as well as the ability to terminate the reaction at any time for the CoPz(BuS)8 loaded SiO2@Fe3O4 cannot be ignored.When electron-rich NaN3 was coordinated with CoPz(BuS)8 as an axial ligand and loaded on Al2O3,the resulting catalyst produced more active oxygen species such as O2^- and HO· to promote the quicker degradation of RhB than that by the other catalysts.For the N3-coordinated CoPz(BuS)8 loaded on Al2O3,the reactions at pH = 4 and 7 distinctly deviated from first-order kinetics,and the degradation rate reached 77.6%after 80 min at pH = 4.
基金financially supported by the National Natural Science Foundation of China (Nos. 51678049 and 51834001)
文摘This paper reports a study on the reconstruction of broken Si O Si bonds in iron ore tailings (IOTs) in concrete. Limestone and IOTs were used to investigate the influence of different types of coarse aggregates on the compressive strengths of concrete samples. The dif- ferences in interfacial transition zones (ITZs) between aggregate and paste were analyzed by scanning electron microscopy (SEM) and ener- gy-dispersive spectroscopy (EDS). Meanwhile, X-ray diffraction (XRD) and infrared spectroscopy (IR) were used to study microscopic changes in limestone and IOTs powders in a simple alkaline environment that simulated cement. The results show that the compressive strengths of IOTs concrete or paste are higher than those of limestone concrete or paste under identical conditions. The Ca/Si atom ratios in the ITZs of IOTs con- crete samples are lower than those of limestone concrete;the diffraction peak of the calcium silicate phase at 2θ = 29.5°, as well as the bands of Si O bonds shifting to lower wavenumbers, indicates reconstruction of the broken Si-O-Si bonds on the surfaces of IOTs with Ca(OH)2.
基金This work was supported by the National Natural Science Foundation of China (Nos. 90406023 and 60571031);National Important Science Research Program of China (Nos. 2006CB933206 and 2006CB705606).
文摘Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing Fe3O4 NPs with average diameters of 11, 20, and 150 nm, we found that the catalytic activity increases with the reduced nanoparticle size. The electrochemical method to characterize the catalytic activity of Fe3O4 NPs using the response currents of the reaction product and substrate was also developed.
基金financially support by the National Natural Science Foundation (Grants No.2117625821676300)the Fundamental Research Funds for the Central Universities (Grants No.15CX06051A)
文摘In this paper,a novel copper-based catalyst for FCC gasoline improving the ability of removal the sulfur and avoiding the loss of the octane number from olefin saturation by reactive adsorption desulfurization(RADS) was investigated.The series of Cu/Zn O-Al_2 O_3 catalysts were characterized by X-ray powder diffraction(XRD),N_2 adsorption analysis and temperature-programmed reduction(TPR) studies,X-ray photoelectron spectroscopy(XPS),scanning electron microscope(SEM) and transmission electron microscopy(TEM).The experiment results showed that the catalysts had an optimum desulfurization ability with copper loading 6 wt%,which the sulfur contents of product decreased less than 10 μg/g and olefin contents decreased from 16.19% to 14.14% for the long period operation.The appropriate Cu loading content could lead to the high active and low apparent activation energy(E_a).Therefore,the Cu-based catalyst may become a novel catalyst for second-generation for reactive adsorption desulfurization,which achieves the high desulfurization active and low olefins saturation to satisfy the upgrading the product.
文摘In order to achieve effective, economic, and easily achievable photocatalyst for the degradation of dye methyl orange(MeO), ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanocomposites were prepared by simple chemical synthetic route in the aqueous medium. Phase, crystallinity, surface structure and surface behavior of the synthesized materials were determined by X-ray diffraction(XRD) and Brunauer-Emmett-Teller analysis(BET) techniques. XRD study established formation of good crystalline ZnO, ZnO/ZnS and ZnO/ZnS/α-Fe2O3 nanomaterials. By using intensity of constituent peaks in the XRD pattern, the compositions of nanocomposites were determined. From the BET analysis, the prepared materials show mesoporous behavior, type Ⅳ curves along with H4 hysteresis. The ZnO/ZnS/α-Fe2O3 composite shows the largest surface area among three materials. From the UV-visible spectra, the band gap energy of the materials was determined. Photoluminescence spectra(PL) were used to determine the emission behavior and surface defects in the materials. In PL spectra, the intensity of UV peak of ZnO/ZnS is lowered than that of ZnO while in case of ZnO/ZnS/α-Fe2O3, the intensity further decreased. The visible emission spectra of ZnO/ZnS increased compared with ZnO while in ZnO/ZnS/α-Fe2O3 it is further increased compared with ZnO/ZnS. The as-synthesized materials were used as photocatalysts for the degradation of dye MeO. The photo-degradation data revealed that the ZnO/ZnS/α-Fe2O3 is the best photocatalyst among three specimens for the degradation of dye MeO. The decrease of intensity of UV emission peak and the increase of intensity of visible emission cause the decrease of recombination of electrons and holes which are ultimately responsible for the highest photocatalytic activity of ZnO/ZnS/α-Fe2O3.
文摘A novel fluorimetric method for determination of laccase activity in organic solvents is proposed, based on the oxidation ofo-phenylenediamine (1,2-diaminobenzene, OPDA) catalyzed by laccase yielding 2,3-diaminophenazine. The optimal conditions for laccase in organic media areT=55°C, pH=6.5, 1.0×10?2mol/L OPDA, 1.25 mL ethanol, 1.25 mL 1,4-dioxane and 1.25 mL acetone. The linear range of the method proposed in ethanol, 1,4-dioxane and acetone media were 0.44–19.33, 0.11–20.85, 0.38–21.05 U with the detection limit of 0.088, 0.022, 0.076 U, respectively. The proposed method has been applied to the analysis of laccase activity of real samples with more accurate and sensitive than that of the previous method reported.
基金Funded by the Zhejiang Provincial Key Research and Development Project(No.2018C01076)。
文摘In order to develop high-performance diamond wheels,the vitrified bond with different contents of Li2O addition and corresponding diamond composites were prepared.The experimental results show that the addition of a small content of Li2O leads the formation of the mullite phase in vitrified bond.When the Li2O content is 3wt%,the mullite content in the vitrified bond reaches the maximum.Whereas,the vitrified bond turns into a pure glass phase when the Li2O content further increases to 5wt%.The softening temperature of vitrified bond,wetting angle between the vitrified bond and the diamond film decrease with the increasing of the Li2O content.The softening point of the vitrified bond with 5wt% Li2O is 537 ℃ and the contact angle is 32°,which are 44 ℃ and 44° lower than those of the sample without Li2O.The CTE (coefficient of thermal expansion),the flexural strength and hardness of the diamond composite sample first increase and then decrease with the increasing of the Li2O content.When the Li2O addition is 3wt%,the flexural strength and hardness of the composites reaches the maximum values of 93 MPa and 98 HRB,respectively,which are 43.1% and 12.6% higher than those of the sample without Li2O.