Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effec...Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.展开更多
The aim of this study was to investigate whether punicalagin(PU)could prevent obesity-related cardiac dysfunction by promoting DNA demethy lation,and to explore its possible mechanism.C57BL/6J mice were fed with stand...The aim of this study was to investigate whether punicalagin(PU)could prevent obesity-related cardiac dysfunction by promoting DNA demethy lation,and to explore its possible mechanism.C57BL/6J mice were fed with standard diet,high-fat diet(HFD),HFD supplemented with resveratrol,low-dose PU(LPU)and high-dose PU(HPU)for 8 weeks.Compared with HFD group,body weight was significantly lower in PU treatment groups,number of cardionwocytes and the protein level of myosin heavy chain 7B were significantly higher in PU treatment groups.Levels of 5-hydroxymethylcytosine and 5-formylcytosine were significantly lower in HFD group than in other groups.Compared with the HFD group,the protein level of ten-eleven translocation enzyme(TET)2 was significantly higher in PU treatment groups,p-AMP-activated protein kinase(AMPK)was significantly higher in LPU group.Levels of total antioxidant capacity and the protein levels of complexesⅡ/Ⅲ/Ⅴ,oxoglutarate dehydrogenase,succinate dehydrogenase B and fumarate hdrolase were significantly lower in HFD group than PU treatment group.The ratio of(succinic acid+fumaric acid)/a-ketoglutarate was significantly higher in HFD group than other groups.In conclusion,PU up-regulated TETs enzyme activities and TET2 protein stability through alleviating mitochondrial dysfunction and activating AMPK,so as to promote DNA demethylation,thus preventing obesity-related cardiac dysfunction.展开更多
Objective: To investigate the therapeutic effect of applying venetoclax combined with demethylating drugs in treating patients with acute myeloid leukemia (AML). Methods: Eighty cases of AML patients treated with vene...Objective: To investigate the therapeutic effect of applying venetoclax combined with demethylating drugs in treating patients with acute myeloid leukemia (AML). Methods: Eighty cases of AML patients treated with venetoclax combined with demethylating drugs in our hospital were selected from March 2021 to March 2024, including 40 cases of primary treatment patients and 40 cases of relapsed and refractory patients. The efficacy and safety of the combined drug therapy was analyzed. Results: The primary treatment group was presented with a complete remission (CR) rate of 40.5%, partial remission (PR) rate of 47.50%, no response (NR) rate of 12.50%, and a remission rate of 87.50%. The relapsed- refractory group was presented with a CR rate of 37.50%, PR rate of 42.50%, NR rate of 17.50%, and a remission rate of 87.50%. There was no statistical significance between the groups (P > 0.05). The hematological adverse reactions of the combined treatment for AML were leukopenia and the non-hematological adverse reactions were mainly infections, with an incidence rate of 87.50%. Conclusion: The efficacy of venetoclax combined with demethylating drugs in AML was remarkable and the treatment regimen can be adjusted according to the treatment-resistant response.展开更多
Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5- hydroxymethylcytosine (5hm...Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5- hydroxymethylcytosine (5hmC) ten-eleven transtocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews (Tupaia belangeri chinensis). The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development, whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews, including in the prefrontal cortex and hippocampus, but not the cerebellum. Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels. Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes.展开更多
BACKGROUND The expression of the membrane receptor protein GFRA1 is frequently upregulated in many cancers,which can promote cancer development by activating the classic RET-RAS-ERK and RET-RAS-PI3K-AKT pathways.Sever...BACKGROUND The expression of the membrane receptor protein GFRA1 is frequently upregulated in many cancers,which can promote cancer development by activating the classic RET-RAS-ERK and RET-RAS-PI3K-AKT pathways.Several therapeutic anti-GFRA1 antibody-drug conjugates are under development.Demethylation(or hypomethylation)of GFRA1 CpG islands(dmGFRA1)is associated with increased gene expression and metastasis risk of gastric cancer.However,it is unknown whether dmGFRA1 affects the metastasis of other cancers,including colon cancer(CC).AIM To study whether dmGFRA1 is a driver for CC metastasis and GFRA1 is a potential therapeutic target.METHODS CC and paired surgical margin tissue samples from 144 inpatients and normal colon mucosal biopsies from 21 noncancer patients were included in this study.The methylation status of GFRA1 islands was determined by MethyLight and denaturing high-performance liquid chromatography and bisulfite-sequencing.Kaplan-Meier analysis was used to explore the effect of dmGFRA1 on the survival of CC patients.Impacts of GFRA1 on CC cell proliferation and migration were evaluated by a battery of biological assays in vitro and in vivo.The phosphorylation of AKT and ERK proteins was examined by Western blot analysis.RESULTS The proportion of dmGFRA1 in CC,surgical margin,and normal colon tissues by MethyLight was 68.4%,73.4%,and 35.9%(median;nonparametric test,P=0.001 and<0.001),respectively.Using the median value of dmGFRA1 peak area proportion as the cutoff,the proportion of dmGFRA1-high samples was much higher in poorly differentiated CC samples than in moderately or welldifferentiated samples(92.3%%vs 55.8%,Chi-square test,P=0.002)and significantly higher in CC samples with distant metastasis than in samples without(77.8%vs 46.0%,P=0.021).The overall survival of patients with dmGFRA1-low CC was significantly longer than that of patients with dmGFRA1-high CC(adjusted hazard ratio=0.49,95%confidence interval:0.24-0.98),especially for 89 CC patients with metastatic CC(adjusted hazard ratio=0.41,95%confidence interval:0.18-0.91).These data were confirmed by the mining results from TCGA datasets.Furthermore,GFRA1 overexpression significantly promoted the proliferation/invasion of RKO and HCT116 cells and the growth of RKO cells in nude mice but did not affect their migration.GFRA1 overexpression markedly increased the phosphorylation levels of AKT and ERK proteins,two key molecules in two classic GFRA1 downstream pathways.CONCLUSION GFRA1 expression is frequently reactivated by DNA demethylation in CC tissues and is significantly associated with a poor prognosis in patients with CC,especially those with metastatic CC.GFRA1 can promote the proliferation/growth of CC cells,probably by the activation of AKT and ERK pathways.GFRA1 might be a therapeutic target for CC patients,especially those with metastatic potential.展开更多
Mesenchymal stem cells(MSCs)are a heterogeneous population that can be isolated from various tissues,including bone marrow,adipose tissue,umbilical cord blood,and craniofacial tissue.MSCs have attracted increasingly m...Mesenchymal stem cells(MSCs)are a heterogeneous population that can be isolated from various tissues,including bone marrow,adipose tissue,umbilical cord blood,and craniofacial tissue.MSCs have attracted increasingly more attention over the years due to their regenerative capacity and function in immunomodulation.The foundation of tissue regeneration is the potential of cells to differentiate into multiple cell lineages and give rise to multiple tissue types.In addition,the immunoregulatory function of MSCs has provided insights into therapeutic treatments for immune-mediated diseases.DNA methylation and demethylation are important epigenetic mechanisms that have been shown to modulate embryonic stem cell maintenance,proliferation,differentiation and apoptosis by activating or suppressing a number of genes.In most studies,DNA hypermethylation is associated with gene suppression,while hypomethylation or demethylation is associated with gene activation.The dynamic balance of DNA methylation and demethylation is required for normal mammalian development and inhibits the onset of abnormal phenotypes.However,the exact role of DNA methylation and demethylation in MSC-based tissue regeneration and immunomodulation requires further investigation.In this review,we discuss how DNA methylation and demethylation function in multi-lineage cell differentiation and immunomodulation of MSCs based on previously published work.Furthermore,we discuss the implications of the role of DNA methylation and demethylation in MSCs for the treatment of metabolic or immune-related diseases.展开更多
Lignin extraction from bark can maximize the utilization of biomass waste,offer cost-effectiveness,and promote environmental friendliness when employed as an adhesive material in bark particleboard production.Particle...Lignin extraction from bark can maximize the utilization of biomass waste,offer cost-effectiveness,and promote environmental friendliness when employed as an adhesive material in bark particleboard production.Particles of fine(0.2 to 1.0 mm),medium(1.0 to 2.5 mm),and coarse(2.5 to 12.0 mm)sizes,derived from the bark of Leucaena leucocephala,were hot-pressed using a heating plate at 175℃for 7 min to create single-layer particleboards measuring 320 mm×320 mm×10 mm,targeting a density of 700 kg/m^(3).Subsequently,the samples were trimmed and conditioned at 20℃and 65%relative humidity.In this study,we compared bark particleboard bonded with urea formaldehyde(UF)adhesive to fine-sized particleboard bonded with demethylated lignin adhesive.The results indicated that bark particleboards utilizing demethylated lignin and UF adhesives exhibited similar qualities.Coarse particleboard showed differences in modulus of elasticity(MOE)and modulus of rupture(MOR),while medium-sized particles exhibited significant variations in moisture content(MC)and water absorption(WA).Furthermore,the thickness swelling of coarse and medium-sized particles under wet and oven-dried conditions exhibited notable distinctions.Overall,the demethylated lignin adhesive extracted from L.leucocephala bark demonstrated similar quality to UF adhesive,with particle size correlating inversely to the strength of the bark particleboard.展开更多
CuCl-catalyzed oxidative N-demethylation of arylamines proceeded in the presence of tert-butyl hydroperoxide. The one-electron transfer route of oxidative N-demethylation competed favorably with the H-atom abstraction...CuCl-catalyzed oxidative N-demethylation of arylamines proceeded in the presence of tert-butyl hydroperoxide. The one-electron transfer route of oxidative N-demethylation competed favorably with the H-atom abstraction route.展开更多
All living cells in a human body are made of the same DNA molecule but cells in different tissues express different genes and proteins.How the transcription process is controlled and regulated is largely unknown.Speci...All living cells in a human body are made of the same DNA molecule but cells in different tissues express different genes and proteins.How the transcription process is controlled and regulated is largely unknown.Specifically,mechanical forces are increasingly recognized to play critical roles in cell and tissue functions.However,what controls force-induced gene transcription is elusive.Recently we have reported that a local surface force transfers from integrins to the cytoskeleton and the link of nucleoskeleton and the cytoskeleton(LINC)into the nucleus and deforms chromatin directly to induce rapid activation of transgene DHFR.Here we show that endogenous mechanoresponsive genes egr-1 and Cav1 are rapidly upregulated and their upregulation depends on stress angles relative to the cell long axis,suggesting direct impact of these genes by force.Demethylation of histone 3 at lysine 9(H3K9)trimethylation(H3K9me3)at nuclear interiors(euchromatin)is necessary for force-induced transcription upregulation.Our findings suggest that force-rapid upregulation of mechanoresponsive genes by force depends on H3K9me3 demethylation.展开更多
OBJECTIVE PP2Ac demethyl⁃ation is regulated by LCMT(a specific leucine carboxyl methyltransferase catalyzing methyla⁃tion of PP2A)and PME(a specific methylester⁃ase catalyzing demethylation of PP2A.This study was to i...OBJECTIVE PP2Ac demethyl⁃ation is regulated by LCMT(a specific leucine carboxyl methyltransferase catalyzing methyla⁃tion of PP2A)and PME(a specific methylester⁃ase catalyzing demethylation of PP2A.This study was to investigate the mechanism of Cor⁃nel iridoid glycoside(CIG)on PP2A catalytic sub⁃unit C(PP2Ac).METHODS Recombined lentivi⁃rus vector was used to deliver PME-1 genetic materials into N2a cells or transfected LCMT-1 siRNA into N2a cells to block the expression of LCMT-1.Twenty-four hours later,cells were rinsed twice with cold PBS(pH 7.4)and CIG at different concentrations(50,100 and 200 g·L^(-1),respectively)were added for 24 h.Western blotting was used to PP2Ac,demethylaion/methylation PP2Ac,LCMT-1 and PME-1.The ac⁃tivity of PP2A was detected by a biochemical as⁃say.RESULTS①Lentivirus transferred PME-1 was expressed at high level in the N2a cells after transduction.Correspondingly,the demethylation of PP2Ac was increasing and PP2A activity was decreasing after transduction.Treatment with CIG for 24 h reversed the increase of PME-1 and demethylation of PP2Ac without influencing LCMT-1 expression.PP2A activity was also sig⁃nificantly enhanced in CIG treatment group,compared with the cells after PME-1 transduc⁃tion.②LCMT-1 siRNA significantly decreased LCMT-1 expression.CIG did not affect LCMT-1expression.however,demethylation of PP2Ac is increased in siRNA-transfected cells and CIG could reversed the high demethylation of PP2Ac and PP2A activity.CONLUSION CIG increases methylation of PP2A subunit C by inhibiting PME-1.展开更多
Objective: The aim of the study was to explore the effect of demethylating agent 5-Aza-2'-deoxycytidine (5-ADC) on expression of Fanconi anemia complementation group F (FANCF) gene and the proliferation of cervica...Objective: The aim of the study was to explore the effect of demethylating agent 5-Aza-2'-deoxycytidine (5-ADC) on expression of Fanconi anemia complementation group F (FANCF) gene and the proliferation of cervical cancer cells, to observe cell's sensitivity to chemotherapeutic drug taxol, and to explore the antitumor effect of 5-ADC as well as the new treatment of cervical cancer. Methods: Cervical cancer cell lines SiHa (FANCF gene full-methylated) and Hela (unmethylated) were treated with 5-ADC. We used the methylation-specific PCR (MSP), reverse transcription-polymerase chain reaction (RT-PCR) and Western blot to detect the FANCF methylation, mRNA and protein respectively. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the proliferation of cells. The cytotoxicity of taxol was measured by flow cytometer. The nude mice bearing SiHa was used to observe the effect of 5-ADC in vivo. Results: Inhibition of DNA promoter methylation by 5-ADC reactivated the expression of FANCF mRNA and protein in SiHa cells, consistent with decreased growth speed and increased taxol resistance. These results were proven in experiments in vivo. Conclusion: The 5-ADC probably become a potential treatment drug through inhibiting the proliferation of cervical cancer cells in taxol-resistant patients.展开更多
基金supported by the National Natural Science Foundation of China,No.82171270 (to ZL)Public Service Platform for Artificial In telligence Screening and Auxiliary Diagnosis for the Medical and Health Industry,Ministry of Industry and Information Technology of the People's Republic of China,No.2020-0103-3-1 (to ZL)+3 种基金the Natural Science Foundation of Beijing,No.Z200016 (to ZL)Beijing Talents Project,No.2018000021223ZK03 (to ZL)Beijing Municipal Committee of Science and Technology,No.Z201 100005620010 (to ZL)CAMS Innovation Fund for Medical Sciences,No.2019-I2M-5-029 (to YongW)。
文摘Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020QH294 and ZR2021QH342)。
文摘The aim of this study was to investigate whether punicalagin(PU)could prevent obesity-related cardiac dysfunction by promoting DNA demethy lation,and to explore its possible mechanism.C57BL/6J mice were fed with standard diet,high-fat diet(HFD),HFD supplemented with resveratrol,low-dose PU(LPU)and high-dose PU(HPU)for 8 weeks.Compared with HFD group,body weight was significantly lower in PU treatment groups,number of cardionwocytes and the protein level of myosin heavy chain 7B were significantly higher in PU treatment groups.Levels of 5-hydroxymethylcytosine and 5-formylcytosine were significantly lower in HFD group than in other groups.Compared with the HFD group,the protein level of ten-eleven translocation enzyme(TET)2 was significantly higher in PU treatment groups,p-AMP-activated protein kinase(AMPK)was significantly higher in LPU group.Levels of total antioxidant capacity and the protein levels of complexesⅡ/Ⅲ/Ⅴ,oxoglutarate dehydrogenase,succinate dehydrogenase B and fumarate hdrolase were significantly lower in HFD group than PU treatment group.The ratio of(succinic acid+fumaric acid)/a-ketoglutarate was significantly higher in HFD group than other groups.In conclusion,PU up-regulated TETs enzyme activities and TET2 protein stability through alleviating mitochondrial dysfunction and activating AMPK,so as to promote DNA demethylation,thus preventing obesity-related cardiac dysfunction.
文摘Objective: To investigate the therapeutic effect of applying venetoclax combined with demethylating drugs in treating patients with acute myeloid leukemia (AML). Methods: Eighty cases of AML patients treated with venetoclax combined with demethylating drugs in our hospital were selected from March 2021 to March 2024, including 40 cases of primary treatment patients and 40 cases of relapsed and refractory patients. The efficacy and safety of the combined drug therapy was analyzed. Results: The primary treatment group was presented with a complete remission (CR) rate of 40.5%, partial remission (PR) rate of 47.50%, no response (NR) rate of 12.50%, and a remission rate of 87.50%. The relapsed- refractory group was presented with a CR rate of 37.50%, PR rate of 42.50%, NR rate of 17.50%, and a remission rate of 87.50%. There was no statistical significance between the groups (P > 0.05). The hematological adverse reactions of the combined treatment for AML were leukopenia and the non-hematological adverse reactions were mainly infections, with an incidence rate of 87.50%. Conclusion: The efficacy of venetoclax combined with demethylating drugs in AML was remarkable and the treatment regimen can be adjusted according to the treatment-resistant response.
基金supported by the Hundred-Talent Program of Chinese Academy of Sciences(Y4065411411100050210)to J.L.+3 种基金the National Natural Science Foundation of China(8147131391649119)to J.L.the National Natural Science Foundation of China(31260242 to)F.Lthe National Science and Technology Infrastructure Program(2014BAI01B01-04)to S.L.
文摘Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5- hydroxymethylcytosine (5hmC) ten-eleven transtocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews (Tupaia belangeri chinensis). The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development, whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews, including in the prefrontal cortex and hippocampus, but not the cerebellum. Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels. Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes.
基金Supported by the National Natural Science Foundation of China A3Foresight Program,No.31261140372Beijing Science and Technology Commission,No.Z151100001615022the Science Foundation of Peking University Cancer Hospital,No.2017-25
文摘BACKGROUND The expression of the membrane receptor protein GFRA1 is frequently upregulated in many cancers,which can promote cancer development by activating the classic RET-RAS-ERK and RET-RAS-PI3K-AKT pathways.Several therapeutic anti-GFRA1 antibody-drug conjugates are under development.Demethylation(or hypomethylation)of GFRA1 CpG islands(dmGFRA1)is associated with increased gene expression and metastasis risk of gastric cancer.However,it is unknown whether dmGFRA1 affects the metastasis of other cancers,including colon cancer(CC).AIM To study whether dmGFRA1 is a driver for CC metastasis and GFRA1 is a potential therapeutic target.METHODS CC and paired surgical margin tissue samples from 144 inpatients and normal colon mucosal biopsies from 21 noncancer patients were included in this study.The methylation status of GFRA1 islands was determined by MethyLight and denaturing high-performance liquid chromatography and bisulfite-sequencing.Kaplan-Meier analysis was used to explore the effect of dmGFRA1 on the survival of CC patients.Impacts of GFRA1 on CC cell proliferation and migration were evaluated by a battery of biological assays in vitro and in vivo.The phosphorylation of AKT and ERK proteins was examined by Western blot analysis.RESULTS The proportion of dmGFRA1 in CC,surgical margin,and normal colon tissues by MethyLight was 68.4%,73.4%,and 35.9%(median;nonparametric test,P=0.001 and<0.001),respectively.Using the median value of dmGFRA1 peak area proportion as the cutoff,the proportion of dmGFRA1-high samples was much higher in poorly differentiated CC samples than in moderately or welldifferentiated samples(92.3%%vs 55.8%,Chi-square test,P=0.002)and significantly higher in CC samples with distant metastasis than in samples without(77.8%vs 46.0%,P=0.021).The overall survival of patients with dmGFRA1-low CC was significantly longer than that of patients with dmGFRA1-high CC(adjusted hazard ratio=0.49,95%confidence interval:0.24-0.98),especially for 89 CC patients with metastatic CC(adjusted hazard ratio=0.41,95%confidence interval:0.18-0.91).These data were confirmed by the mining results from TCGA datasets.Furthermore,GFRA1 overexpression significantly promoted the proliferation/invasion of RKO and HCT116 cells and the growth of RKO cells in nude mice but did not affect their migration.GFRA1 overexpression markedly increased the phosphorylation levels of AKT and ERK proteins,two key molecules in two classic GFRA1 downstream pathways.CONCLUSION GFRA1 expression is frequently reactivated by DNA demethylation in CC tissues and is significantly associated with a poor prognosis in patients with CC,especially those with metastatic CC.GFRA1 can promote the proliferation/growth of CC cells,probably by the activation of AKT and ERK pathways.GFRA1 might be a therapeutic target for CC patients,especially those with metastatic potential.
基金Supported by Beijing Natural Science Foundation,No.7182182the Young Elite Scientist Sponsorship Program by Cast,No.YESS20170089+1 种基金the National Natural Science Foundation of China,No.81600865 and No.81970940the National Science and Technology Major Project of the Ministry of Science and Technology of China,No.2018ZX10302207。
文摘Mesenchymal stem cells(MSCs)are a heterogeneous population that can be isolated from various tissues,including bone marrow,adipose tissue,umbilical cord blood,and craniofacial tissue.MSCs have attracted increasingly more attention over the years due to their regenerative capacity and function in immunomodulation.The foundation of tissue regeneration is the potential of cells to differentiate into multiple cell lineages and give rise to multiple tissue types.In addition,the immunoregulatory function of MSCs has provided insights into therapeutic treatments for immune-mediated diseases.DNA methylation and demethylation are important epigenetic mechanisms that have been shown to modulate embryonic stem cell maintenance,proliferation,differentiation and apoptosis by activating or suppressing a number of genes.In most studies,DNA hypermethylation is associated with gene suppression,while hypomethylation or demethylation is associated with gene activation.The dynamic balance of DNA methylation and demethylation is required for normal mammalian development and inhibits the onset of abnormal phenotypes.However,the exact role of DNA methylation and demethylation in MSC-based tissue regeneration and immunomodulation requires further investigation.In this review,we discuss how DNA methylation and demethylation function in multi-lineage cell differentiation and immunomodulation of MSCs based on previously published work.Furthermore,we discuss the implications of the role of DNA methylation and demethylation in MSCs for the treatment of metabolic or immune-related diseases.
基金the financial support provided by UMS Great(GUG0217-1/2018),which played a crucial role in the completion of this study.
文摘Lignin extraction from bark can maximize the utilization of biomass waste,offer cost-effectiveness,and promote environmental friendliness when employed as an adhesive material in bark particleboard production.Particles of fine(0.2 to 1.0 mm),medium(1.0 to 2.5 mm),and coarse(2.5 to 12.0 mm)sizes,derived from the bark of Leucaena leucocephala,were hot-pressed using a heating plate at 175℃for 7 min to create single-layer particleboards measuring 320 mm×320 mm×10 mm,targeting a density of 700 kg/m^(3).Subsequently,the samples were trimmed and conditioned at 20℃and 65%relative humidity.In this study,we compared bark particleboard bonded with urea formaldehyde(UF)adhesive to fine-sized particleboard bonded with demethylated lignin adhesive.The results indicated that bark particleboards utilizing demethylated lignin and UF adhesives exhibited similar qualities.Coarse particleboard showed differences in modulus of elasticity(MOE)and modulus of rupture(MOR),while medium-sized particles exhibited significant variations in moisture content(MC)and water absorption(WA).Furthermore,the thickness swelling of coarse and medium-sized particles under wet and oven-dried conditions exhibited notable distinctions.Overall,the demethylated lignin adhesive extracted from L.leucocephala bark demonstrated similar quality to UF adhesive,with particle size correlating inversely to the strength of the bark particleboard.
基金Supported by the National Natural Science Foundation of China(No.20572058)
文摘CuCl-catalyzed oxidative N-demethylation of arylamines proceeded in the presence of tert-butyl hydroperoxide. The one-electron transfer route of oxidative N-demethylation competed favorably with the H-atom abstraction route.
基金supported by the funds from Huazhong University of Science and Technology and US NIH grant GM 072744
文摘All living cells in a human body are made of the same DNA molecule but cells in different tissues express different genes and proteins.How the transcription process is controlled and regulated is largely unknown.Specifically,mechanical forces are increasingly recognized to play critical roles in cell and tissue functions.However,what controls force-induced gene transcription is elusive.Recently we have reported that a local surface force transfers from integrins to the cytoskeleton and the link of nucleoskeleton and the cytoskeleton(LINC)into the nucleus and deforms chromatin directly to induce rapid activation of transgene DHFR.Here we show that endogenous mechanoresponsive genes egr-1 and Cav1 are rapidly upregulated and their upregulation depends on stress angles relative to the cell long axis,suggesting direct impact of these genes by force.Demethylation of histone 3 at lysine 9(H3K9)trimethylation(H3K9me3)at nuclear interiors(euchromatin)is necessary for force-induced transcription upregulation.Our findings suggest that force-rapid upregulation of mechanoresponsive genes by force depends on H3K9me3 demethylation.
文摘OBJECTIVE PP2Ac demethyl⁃ation is regulated by LCMT(a specific leucine carboxyl methyltransferase catalyzing methyla⁃tion of PP2A)and PME(a specific methylester⁃ase catalyzing demethylation of PP2A.This study was to investigate the mechanism of Cor⁃nel iridoid glycoside(CIG)on PP2A catalytic sub⁃unit C(PP2Ac).METHODS Recombined lentivi⁃rus vector was used to deliver PME-1 genetic materials into N2a cells or transfected LCMT-1 siRNA into N2a cells to block the expression of LCMT-1.Twenty-four hours later,cells were rinsed twice with cold PBS(pH 7.4)and CIG at different concentrations(50,100 and 200 g·L^(-1),respectively)were added for 24 h.Western blotting was used to PP2Ac,demethylaion/methylation PP2Ac,LCMT-1 and PME-1.The ac⁃tivity of PP2A was detected by a biochemical as⁃say.RESULTS①Lentivirus transferred PME-1 was expressed at high level in the N2a cells after transduction.Correspondingly,the demethylation of PP2Ac was increasing and PP2A activity was decreasing after transduction.Treatment with CIG for 24 h reversed the increase of PME-1 and demethylation of PP2Ac without influencing LCMT-1 expression.PP2A activity was also sig⁃nificantly enhanced in CIG treatment group,compared with the cells after PME-1 transduc⁃tion.②LCMT-1 siRNA significantly decreased LCMT-1 expression.CIG did not affect LCMT-1expression.however,demethylation of PP2Ac is increased in siRNA-transfected cells and CIG could reversed the high demethylation of PP2Ac and PP2A activity.CONLUSION CIG increases methylation of PP2A subunit C by inhibiting PME-1.
基金Supported by the grant from the National Science Foundation of Chongqing (No. cstc2011jjA10081)
文摘Objective: The aim of the study was to explore the effect of demethylating agent 5-Aza-2'-deoxycytidine (5-ADC) on expression of Fanconi anemia complementation group F (FANCF) gene and the proliferation of cervical cancer cells, to observe cell's sensitivity to chemotherapeutic drug taxol, and to explore the antitumor effect of 5-ADC as well as the new treatment of cervical cancer. Methods: Cervical cancer cell lines SiHa (FANCF gene full-methylated) and Hela (unmethylated) were treated with 5-ADC. We used the methylation-specific PCR (MSP), reverse transcription-polymerase chain reaction (RT-PCR) and Western blot to detect the FANCF methylation, mRNA and protein respectively. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to detect the proliferation of cells. The cytotoxicity of taxol was measured by flow cytometer. The nude mice bearing SiHa was used to observe the effect of 5-ADC in vivo. Results: Inhibition of DNA promoter methylation by 5-ADC reactivated the expression of FANCF mRNA and protein in SiHa cells, consistent with decreased growth speed and increased taxol resistance. These results were proven in experiments in vivo. Conclusion: The 5-ADC probably become a potential treatment drug through inhibiting the proliferation of cervical cancer cells in taxol-resistant patients.