目的建立能同时测定冠心安口服液中蒙花苷、延胡索乙素和2,3,5,4’-四羟基二苯乙烯-2-O-β-D-葡萄糖苷含量的HPLC分析方法。方法Capcell Pak UG C_(18)色谱柱分离;蒙花苷、延胡索乙素和2,3,5,4’-四羟基二苯乙烯-2-O-β-D-葡萄糖苷检测...目的建立能同时测定冠心安口服液中蒙花苷、延胡索乙素和2,3,5,4’-四羟基二苯乙烯-2-O-β-D-葡萄糖苷含量的HPLC分析方法。方法Capcell Pak UG C_(18)色谱柱分离;蒙花苷、延胡索乙素和2,3,5,4’-四羟基二苯乙烯-2-O-β-D-葡萄糖苷检测波长分别设定为334、281、320 nm;柱温为室温;进样体积为10μL;以乙腈为流动相A,1 mL·L^(−1)磷酸溶液(三乙胺调节pH至6.0)为流动相B,梯度洗脱。结果蒙花苷、延胡索乙素和2,3,5,4’-四羟基二苯乙烯-2-O-β-D-葡萄糖苷的质量浓度分别在0.0245~2.4500、0.0457~4.5700、0.0474~4.7400μg·mL^(−1)范围内线性良好;平均回收率分别为100.8%、99.9%、101.4%;精密度和重复性RSD值(n=6)均在5.0%以内;供试品溶液在24 h内稳定。结论此方法具有前处理简单、分析时间短和检测结果准确等优点,适用于冠心安口服液制剂的质量控制。展开更多
The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is u...The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.展开更多
In recent years, there has been remarkable progress in the performance of metal halide perovskite solar cells. Studies have shown significant interest in lead-free perovskite solar cells (PSCs) due to concerns about t...In recent years, there has been remarkable progress in the performance of metal halide perovskite solar cells. Studies have shown significant interest in lead-free perovskite solar cells (PSCs) due to concerns about the toxicity of lead in lead halide perovskites. CH3NH3SnI3 emerges as a viable alternative to CH3NH3PbX3. In this work, we studied the effect of various parameters on the performance of lead-free perovskite solar cells using simulation with the SCAPS 1D software. The cell structure consists of α-Fe2O3/CH3NH3SnI3/PEDOT: PSS. We analyzed parameters such as thickness, doping, and layer concentration. The study revealed that, without considering other optimized parameters, the efficiency of the cell increased from 22% to 35% when the perovskite thickness varied from 100 to 1000 nm. After optimization, solar cell efficiency reaches up to 42%. The optimization parameters are such that, for example, for perovskite: the layer thickness is 700 nm, the doping concentration is 1020 and the defect density is 1013 cm−3, and for hematite: the thickness is 5 nm, the doping concentration is 1022 and the defect concentration is 1011 cm−3. These results are encouraging because they highlight the good agreement between perovskite and hematite when used as the active and electron transport layers, respectively. Now, it is still necessary to produce real, viable photovoltaic solar cells with the proposed material layer parameters.展开更多
杨梅素是一种主要用于抗炎的多酚类黄酮化合物,为改善其水溶性和稳定性,合成了杨梅素-3-O-β-D-乳糖,并开发了一条高效的合成路线。首先以杨梅苷为起始原料,对杨梅苷的5位、7位、3′位、4′位和5′位酚羟基进行保护,形成五苄基保护的杨...杨梅素是一种主要用于抗炎的多酚类黄酮化合物,为改善其水溶性和稳定性,合成了杨梅素-3-O-β-D-乳糖,并开发了一条高效的合成路线。首先以杨梅苷为起始原料,对杨梅苷的5位、7位、3′位、4′位和5′位酚羟基进行保护,形成五苄基保护的杨梅苷。然后脱除3位鼠李糖,再与乙酰基保护的乳糖溴苷反应,最后通过依次脱去乙酰基和苄基得到目标化合物。经过路径优化,最终以更高效的方法合成了杨梅素-3-O-β-D-乳糖,减少了副产物的生成,提高了原合成路线总收率,此方法的总产率为44.5%。该路径得到了2个新型的杨梅素衍生物中间体。目标化合物的结构均经过1 H NMR,13 C NMR和HR-MS(ESI)确证。展开更多
目的建立复方鲜竹沥液中南烛木树脂酚-3α-O-β-d-葡萄糖苷含量的测定方法。方法采用HPLC法,以资生堂capcell pak C_(18)(250mm×4.6mm×5μm)为色谱柱,柱温30℃,乙腈-0.1%磷酸梯度洗脱,流速为1.0mL·min^(-1),检测波长为22...目的建立复方鲜竹沥液中南烛木树脂酚-3α-O-β-d-葡萄糖苷含量的测定方法。方法采用HPLC法,以资生堂capcell pak C_(18)(250mm×4.6mm×5μm)为色谱柱,柱温30℃,乙腈-0.1%磷酸梯度洗脱,流速为1.0mL·min^(-1),检测波长为220nm。结果南烛木树脂酚-3α-O-β-d-葡萄糖苷在0.2264~11.32μg·mL^(-1)浓度范围内线性良好(R^(2)=0.9999),加标回收率为97.06%,RSD(n=9)为1.08%,且方法的精密度、稳定性以及重复性的RSD均小于3.0%。结论该方法快速、简便、准确,可为复方鲜竹沥液的质量控制和评价提供依据。展开更多
文摘目的建立能同时测定冠心安口服液中蒙花苷、延胡索乙素和2,3,5,4’-四羟基二苯乙烯-2-O-β-D-葡萄糖苷含量的HPLC分析方法。方法Capcell Pak UG C_(18)色谱柱分离;蒙花苷、延胡索乙素和2,3,5,4’-四羟基二苯乙烯-2-O-β-D-葡萄糖苷检测波长分别设定为334、281、320 nm;柱温为室温;进样体积为10μL;以乙腈为流动相A,1 mL·L^(−1)磷酸溶液(三乙胺调节pH至6.0)为流动相B,梯度洗脱。结果蒙花苷、延胡索乙素和2,3,5,4’-四羟基二苯乙烯-2-O-β-D-葡萄糖苷的质量浓度分别在0.0245~2.4500、0.0457~4.5700、0.0474~4.7400μg·mL^(−1)范围内线性良好;平均回收率分别为100.8%、99.9%、101.4%;精密度和重复性RSD值(n=6)均在5.0%以内;供试品溶液在24 h内稳定。结论此方法具有前处理简单、分析时间短和检测结果准确等优点,适用于冠心安口服液制剂的质量控制。
基金supported by the National Natural Science Foundation of China(42161007)the Scientific Research Program for Higher Education Institutions of Gansu Province(2021B-081)the Natural Science Foundation of Gansu Province(22JR5RA074).
文摘The isotope composition in precipitation has been widely considered as a tracer of monsoon activity.Compared with the coastal region,the monsoon margin usually has limited precipitation with large fluctuation and is usually sensitive to climate change.The water resource management in the monsoon margin should be better planned by understanding the composition of precipitation isotope and its influencing factors.In this study,the precipitation samples were collected at five sampling sites(Baiyin City,Kongtong District,Maqu County,Wudu District,and Yinchuan City)of the monsoon margin in the northwest of China in 2022 to analyze the characteristics of stable hydrogen(δD)and oxygen(δ18O)isotopes.We analyzed the impact of meteorological factors(temperature,precipitation,and relative humidity)on the composition of precipitation isotope at daily level by regression analysis,utilized the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)-based backward trajectory model to simulate the air mass trajectory of precipitation events,and adopted the potential source contribution function(PSCF)and concentration weighted trajectory(CWT)to analyze the water vapor sources.The results showed that compared with the global meteoric water line(GMWL),the slope of the local meteoric water line(LMWL;δD=7.34δ^(18)O-1.16)was lower,indicating the existence of strong regional evaporation in the study area.Temperature significantly contributed toδ18O value,while relative humidity had a significant negative effect onδ18O value.Through the backward trajectory analysis,we found eight primary locations that were responsible for the water vapor sources of precipitation in the study area,of which moisture from the Indian Ocean to South China Sea(ITSC)and the western continental(CW)had the greatest influence on precipitation in the study area.The hydrogen and oxygen isotopes in precipitation are significantly influenced by the sources and transportation paths of air mass.In addition,the results of PSCF and CWT analysis showed that the water vapor source areas were primarily distributed in the south and northwest direction of the study area.
文摘In recent years, there has been remarkable progress in the performance of metal halide perovskite solar cells. Studies have shown significant interest in lead-free perovskite solar cells (PSCs) due to concerns about the toxicity of lead in lead halide perovskites. CH3NH3SnI3 emerges as a viable alternative to CH3NH3PbX3. In this work, we studied the effect of various parameters on the performance of lead-free perovskite solar cells using simulation with the SCAPS 1D software. The cell structure consists of α-Fe2O3/CH3NH3SnI3/PEDOT: PSS. We analyzed parameters such as thickness, doping, and layer concentration. The study revealed that, without considering other optimized parameters, the efficiency of the cell increased from 22% to 35% when the perovskite thickness varied from 100 to 1000 nm. After optimization, solar cell efficiency reaches up to 42%. The optimization parameters are such that, for example, for perovskite: the layer thickness is 700 nm, the doping concentration is 1020 and the defect density is 1013 cm−3, and for hematite: the thickness is 5 nm, the doping concentration is 1022 and the defect concentration is 1011 cm−3. These results are encouraging because they highlight the good agreement between perovskite and hematite when used as the active and electron transport layers, respectively. Now, it is still necessary to produce real, viable photovoltaic solar cells with the proposed material layer parameters.
文摘提出了一种2.5维(2.5D)系统封装高速输入/输出(I/O)全链路的信号/电源完整性(Signal integrity/power integrity,SI/PI)协同仿真方法。首先通过电磁全波仿真分析SiP内部“芯片I/O引脚-有源转接板-印刷电路板(即封装基板)-封装体I/O引脚”这一主要高速信号链路及相应的转接板/印刷电路板电源分配网络(Power distribution network,PDN)的结构特征和电学特性,在此基础上分别搭建对应有源转接板和印刷电路板两种组装层级的“信号链路+PDN”模型,并分别进行SI/PI协同仿真,提取出反映信号链路/PDN耦合特性的模块化集总电路模型,从而在电路仿真器中以级联模型实现快速的SI/PI协同仿真。与全链路的全波仿真结果的对比表明,模块化后的协同仿真有很好的可信度,而且仿真时间与资源开销大幅缩减,效率明显提升。同时总结了去耦电容的大小与布局密度对PDN电源完整性的影响及对信号完整性的潜在影响,提出了去耦电容布局优化的建议。
文摘杨梅素是一种主要用于抗炎的多酚类黄酮化合物,为改善其水溶性和稳定性,合成了杨梅素-3-O-β-D-乳糖,并开发了一条高效的合成路线。首先以杨梅苷为起始原料,对杨梅苷的5位、7位、3′位、4′位和5′位酚羟基进行保护,形成五苄基保护的杨梅苷。然后脱除3位鼠李糖,再与乙酰基保护的乳糖溴苷反应,最后通过依次脱去乙酰基和苄基得到目标化合物。经过路径优化,最终以更高效的方法合成了杨梅素-3-O-β-D-乳糖,减少了副产物的生成,提高了原合成路线总收率,此方法的总产率为44.5%。该路径得到了2个新型的杨梅素衍生物中间体。目标化合物的结构均经过1 H NMR,13 C NMR和HR-MS(ESI)确证。
文摘目的建立复方鲜竹沥液中南烛木树脂酚-3α-O-β-d-葡萄糖苷含量的测定方法。方法采用HPLC法,以资生堂capcell pak C_(18)(250mm×4.6mm×5μm)为色谱柱,柱温30℃,乙腈-0.1%磷酸梯度洗脱,流速为1.0mL·min^(-1),检测波长为220nm。结果南烛木树脂酚-3α-O-β-d-葡萄糖苷在0.2264~11.32μg·mL^(-1)浓度范围内线性良好(R^(2)=0.9999),加标回收率为97.06%,RSD(n=9)为1.08%,且方法的精密度、稳定性以及重复性的RSD均小于3.0%。结论该方法快速、简便、准确,可为复方鲜竹沥液的质量控制和评价提供依据。