期刊文献+
共找到361篇文章
< 1 2 19 >
每页显示 20 50 100
A dendritic Cu/Cu_(2)O structure with high curvature enables rapid and efficient reduction of carbon dioxide to C_(2) in an H-cell
1
作者 Lei shao Bochen Hu +3 位作者 Jinhui Hao Junjie Jin Weidong Shi Min Chen 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期144-153,共10页
Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is chall... Electrocatalytic reduction of CO_(2)(CO_(2)RR)to multicarbon products is an efficient approach for ad-dressing the energy crisis and achieving carbon neutrality.In H-cells,achieving high-current C_(2)products is challenging because of the inefficient mass transfer of the catalyst and the presence of the hydrogen evolution reaction(HER).In this study,dendritic Cu/Cu_(2)O with abundant Cu^(0)/Cu^(+)interfaces and numerous dendritic curves was synthesized in a CO_(2)atmosphere,resulting in the high selectivity and current density of the C_(2)products.Dendritic Cu/Cu_(2)O achieved a C_(2)Faradaic efficiency of 69.8%and a C_(2)partial current density of 129.5 mA cm^(-2)in an H-cell.Finite element simulations showed that a dendritic structure with a high curvature generates a strong electric field,leading to a localized CO_(2)concentration.Additionally,DRT analysis showed that a dendritic struc-ture with a high curvature actively adsorbed the surrounding high concentration of CO_(2),enhancing the mass transfer rate and achieving a high current density.During the experiment,the impact of the electronic structure on the performance of the catalyst was investigated by varying the atomic ratio of Cu^(0)/Cu^(+) on the catalyst surface,which resulted in improved ethylene selectivity.Under the optimal atomic ratio of Cu^(0)/Cu^(+),the charge transfer resistance was minimized,and the desorption rate of the intermediates was low,favoring C_(2) generation.Density functional theory calculations indicated that the Cu^(0)/Cu^(+) interfaces exhibited a lower Gibbs free energy for the rate-determining step,enhancing C_(2)H_(4) formation.The Cu/Cu_(2)O catalyst also exhibited a low Cu d-band center,which enhanced the adsorption stability of *CO on the surface and facilitated C_(2)formation.This observa-tion explained the higher yield of C_(2) products at the Cu^(0)/Cu^(+) interface than that of H_(2) under rapid mass transfer.The results of the net present value model showed that the H-cell holds promising industrial prospects,contingent upon it being a catalyst with both high selectivity and high current density.This approach of integrating the structure and composition provides new insights for ad-vancing the CO_(2)RR towards high-current C_(2) products. 展开更多
关键词 reduction of Co_(2) High current Dendritic structure Cu/Cu_(2)o H-cell
下载PDF
Synergetic enhancement of selectivity for electroreduction of CO_(2)to C_(2)H_(4)by crystal facet engineering and tandem catalysis over silver-incorporated-cuprous oxides
2
作者 Gang Dong Chuang Xue +3 位作者 Meng Li Tiantian Zhang Dongsheng Geng Li-Min Liu 《Materials Reports(Energy)》 2023年第2期164-172,I0004,共10页
Electrochemical CO_(2)reduction to C_(2)H_(4)can provide a sustainable route to reduce globally accelerating CO_(2)emissions and produce energy-rich chemical feedstocks.However,the poor selectivity in C_(2)H_(4)electr... Electrochemical CO_(2)reduction to C_(2)H_(4)can provide a sustainable route to reduce globally accelerating CO_(2)emissions and produce energy-rich chemical feedstocks.However,the poor selectivity in C_(2)H_(4)electrosynthesis limits its implementation in industrially interesting processes.Herein,we report a composite structured catalyst composed of Ag and Cu_(2)O with different crystal faces to achieve highly efficient reduction of CO_(2)to C_(2)H_(4).The catalyst composed of Ag and octahedral Cu_(2)O enclosed with(111)facet exhibits the best CO_(2)electroreduction performance,with the Faradaic efficiency(FE)and partial current density reaching 66.8%and 17.8 mA cm2 for C_(2)H_(4)product at-1.2 VRHE in 0.5 M KHCO_(3),respectively.Physical characterization and electrochemical test analysis indicate that the high selectivity for C_(2)H_(4)product stems from the synergistic effect of crystal faces control engineering and tandem catalysis.Specifically,Ag can provide optimal availability of CO intermediate by suppressing hydrogen evolution;subsequently,C-C coupling is promoted on the intimate surface of Cu_(2)O with facetdependent selectivity.The insights gained from this work may be beneficial for designing efficient multicomponent catalysts for improving the selectivity of electrochemical CO_(2)reduction reaction to generate C2þproducts. 展开更多
关键词 Cu_(2)o/Ag tandem catalysts Facet-dependent selectivity Co_(2)reduction reaction C_(2)H_(4) ELECTRoCATALYSIS Synergistic effect
下载PDF
Non-isothermal reduction kinetics of Fe_2O_3-NiO composites for formation of Fe-Ni alloy using carbon monoxide 被引量:3
3
作者 李博 魏永刚 王华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第11期3710-3715,共6页
The non-isothermal reduction kinetics and mechanism of Fe2O3-NiO composites with different Fe2O3-NiO compacts using carbon monoxide as reductant were investigated. The results show that the reduction degree increases ... The non-isothermal reduction kinetics and mechanism of Fe2O3-NiO composites with different Fe2O3-NiO compacts using carbon monoxide as reductant were investigated. The results show that the reduction degree increases rapidly with increasing the content of NiO, and the presence of NiO also improves the reduction rate of iron oxides. It is found that NiO is preferentially reduced at the beginning of the reactions, and then the metallic Ni acts as a catalyst promoting the reduction rate of iron oxides. It is also observed that the increase of the Ni O content enhances the formation of awaruite(FeNi3) but decreases the percentage of kamacite(Fe,Ni) and taenite(Fe,Ni). The particle size of the materials tends to be uniform during the reduction process due to the presence of metallic nickel, metallic iron and the formation of Fe-Ni alloy. The concentration of CO in the product gas is greater than that of CO2 at the beginning of the reaction and then slows down. The fastest reduction rate of Fe2O3-NiO composites with CO appears at 400-500 °C, and nucleation growth model can be used to elucidate the reduction mechanism. Nucleation growth process is found to be the rate controlling step when the temperature is lower than 1000 °C. 展开更多
关键词 reduction kinetics FE2o3 NIo Fe-Ni alloy carbon monoxide
下载PDF
Co_3O_4 nanoparticles assembled on polypyrrole/graphene oxide for electrochemical reduction of oxygen in alkaline media 被引量:3
4
作者 任素贞 郭亚男 +6 位作者 马少博 毛庆 吴丹丹 杨莹 景洪宇 宋雪旦 郝策 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第7期1281-1290,共10页
The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (C... The development of highly efficient catalysts for cathodes remains an important objective of fuel cell research. Here, we report Co3O4 nanoparticles assembled on a polypyrrole/graphene oxide electrocatalyst (Co3O4/Ppy/GO) as an efficient catalyst for the oxygen reduction reaction (ORR) in alkaline media. The catalyst was prepared via the hydrothermal reaction of Co2+ ions with Ppy-modified GO. The GO, Ppy/GO, and Co3O4/Ppy/GO were characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The incorporation of Ppy into GO nanosheets resulted in the formation of a nitrogen-modified GO po-rous structure, which acted as an efficient electron-transport network for the ORR. With further anchoring of Co3O4 on Ppy/GO, the as-prepared Co3O4/Ppy/GO exhibited excellent ORR activity and followed a four-electron route mechanism for the ORR in alkaline solution. An onset potential of -0.10 V vs. a saturated calomel electrode and a diffusion limiting current density of 2.30 mA/cm^2 were achieved for the Co3O4/Ppy/GO catalyst heated at 800 ℃; these values are comparable to those for noble-metal-based Pt/C catalysts. Our work demonstrates that Co3O4/Ppy/GO is highly active for the ORR. Notably, the Ppy coupling effects between Co3O4 and GO provide a new route for the preparation of efficient non-precious electrocatalysts with hierarchical porous structures for fuel cell applications. 展开更多
关键词 Non-precious metal electrocatalyst Co3o4 PoLYPYRRoLE Graphene oxygen reduction reaction Proton-exchange membrane fuel cell
下载PDF
Differences of Phenomenological Reduction and Fusion of Horizons in Analyzing Literary Works——Analysis of Hawthorne's Young Goodman Brown from the Perspectives of Phenomenological Reduction and Fusion of Horizons
5
作者 李宁 《海外英语》 2014年第16期161-162,167,共3页
Edmund Husserl's first important move about phenomenology is the"phenomenological reduction"which means that we should reduce the external world to the contents of our consciousness alone. However, Hans-... Edmund Husserl's first important move about phenomenology is the"phenomenological reduction"which means that we should reduce the external world to the contents of our consciousness alone. However, Hans-Georg Gadamer holds the opinion that all interpretation of a past work consists in a dialogue between past and present(Eagleton, T. 2009:62). Gadamer's famous theory is fusion of horizons which means that the event of understanding comes about when our own"horizon"of historical meanings and assumptions"fuses"with the"horizon"within which the work itself is placed. The present thesis takes Hawthorne's YoungGoodmanBrown as an example to illustrate different understandings when readers apply the two different theories. 展开更多
关键词 PHENoMENoLoGICAL reduction Edmund HUSSERL Fusion o
下载PDF
Comparison of reduction behavior of Fe_2O_3, ZnO and ZnFe_2O_4 by TPR technique 被引量:32
6
作者 Meisheng Liang Wenkai Kang Kechang Xie 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第1期110-113,共4页
Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable, desulfurization sorbents capable of removing hydrogen sulfide from coal gasif... Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable, desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier gas to very low levels. As a sort of effective desufurizer, such as Fe2O3, ZnO and ZnFe2O4, it will endure strong reducing atmosphere in desulfurization process. The reduced degree of desufurizer can have an effect on its desulfurization reactivity. In this paper, Fe2O3, ZnO and ZnFe2O4 were synthesized by precipitation or co-precipitation at constant pH. After aging, washing and drying, the solids were calcined at 800℃. The reduction behaviors of sample were characterized by temperature-programmed reduction (TPR). It is found that there are two reduction peaks for Fe2O3 in TPR, and whereas no reduction peaks for ZnO are found. The reduction process of ZnFe2O4 prepared by co-precipitation is different from that of Fe2O3. ZnFe2O4 is easier to be reduced than Fe2O3. The activation energy of reduction process for Fe2O3 and ZnFe2O4 is obtained at different reduction periods. 展开更多
关键词 FE2o3 ZNFE2o4 ZNo reduction behavior TPR
下载PDF
Toxicity Reduction of Municipal Wastewater by Anaerobic-anoxic-oxic Process 被引量:5
7
作者 MAN-HONG HUANG YONG-MEI LI GuO-WEi GU 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2010年第6期481-486,共6页
Objective This study was conducted to optimize the operational parameters of anaerobic-anoxic-oxic (A^2/O) processes to reduce the toxicity of municipal wastewater and evaluate its ability to reduce toxicity. Method... Objective This study was conducted to optimize the operational parameters of anaerobic-anoxic-oxic (A^2/O) processes to reduce the toxicity of municipal wastewater and evaluate its ability to reduce toxicity. Methods A luminescent bacterium toxicity bioassay was employed to assess the toxicity of influent and effluent of each reactor in the A2/O system. Results The optimum operational parameters for toxicity reduction were as follows: anaerobic hydraulic retention time (HRT) = 2.8 h, anoxic HRT = 2.8 h, aerobic HRT = 6.9 h, sludge retention time (SRT) = 15 days and internal recycle ratio (IRR) = 100%. An important toxicity reduction (%) was observed in the optimized A2/O process, even when the toluene concentration of the influent was 120.7 mg·L^-1. Conclusions The toxicity of municipal wastewater was reduced significantly during the A^2/O process. A^2/O process can be used for toxicity reduction of municipal wastewater under toxic-shock loading. 展开更多
关键词 A^2/o process Municipal wastewater Toxicity reduction Process optimization Toxic-shock loading
下载PDF
中国蔬菜生产体系N_(2)O排放的空间差异及减排措施
8
作者 钟东亮 方雪娟 +5 位作者 周唯珺 Mohammad Jawad Alami 许肃 黄葳 崔胜辉 高兵 《植物营养与肥料学报》 CAS CSCD 北大核心 2024年第3期417-429,共13页
[目的]了解中国不同蔬菜种植模式、种植区域和蔬菜类型的N_(2)O-N排放系数及不同减排措施对N2O排放和蔬菜产量的综合影响,以减少区域和全国蔬菜体系N2O排放清单估算的不确定性。[方法]检索收集关于中国菜地N_(2)O排放及减排研究论文的... [目的]了解中国不同蔬菜种植模式、种植区域和蔬菜类型的N_(2)O-N排放系数及不同减排措施对N2O排放和蔬菜产量的综合影响,以减少区域和全国蔬菜体系N2O排放清单估算的不确定性。[方法]检索收集关于中国菜地N_(2)O排放及减排研究论文的田间观测数据,基于数据整合分析方法,系统分析不同蔬菜生产区和不同蔬菜类型在设施和露地两种栽培模式下的排放系数,及不同管理措施对土壤N_(2)O减排潜力和产量的影响。[结果]华北、西北、长江中下游、西南和华南露地蔬菜土壤N2O-N排放系数分别为1.27%、0.83%、1.20%、1.54%和5.57%,全国平均为1.23%,华南是西北地区的6.7倍。华北、西北、长江中下游设施蔬菜N_(2)O-N排放系数分别为0.99%、0.65%、1.13%,全国平均为0.88%。露地种植模式下,叶菜类、茄果类、块茎类和根类蔬菜菜田N_(2)O-N排放系数分别为1.72%、1.03%、0.92%和1.28%;设施种植模式下,叶菜类、茄果类、块茎类菜田的N_(2)O-N排放系数分别为0.44%、0.95%和0.41%。减氮施肥、施用生物炭、优化灌溉和施用硝化抑制剂与常规施肥相比,N_(2)O分别减排41.3%、29.1%、37.4%和27.9%。相比单一减排措施,优化灌溉和减氮施肥、硝化抑制剂和减氮施肥组合措施的N_(2)O减排效果可达45.8%~57.3%。不同硝化抑制剂的N_(2)O减排效果相当(26.5%~29.7%)。当生物炭施用量为≤10、10~20、20~30、30~40 t/hm时,N_(2)O可分别减排31.7%、24.3%、38.0%、26.8%。相比于常规管理措施,氮肥投入量减少≤20%、20%~30%、30%~40%、40%~50%、>50%时,可分别减少N_(2)O排放量36.9%、37.5%、29.7%、71.3%、39.4%。[结论]中国设施和露地蔬菜N_(2)O-N的排放系数在不同蔬菜产区和蔬菜种类间均存在较大差异,尤其需重视南方亚热带地区一年多熟蔬菜体系N_(2)O排放与减排。依据蔬菜类型制定减排措施的效果较为稳定。单一减施40%~50%氮肥、使用硝化抑制剂、施用生物炭(20~30 t/hm^(2))等措施均可实现蔬菜稳产和最佳的N_(2)O减排效果的双赢。采用减施氮肥+优化灌溉和减施氮肥+硝化抑制剂两种组合措施,可进一步削减土壤N_(2)O的排放。 展开更多
关键词 氧化亚氮排放系数 种植区域 蔬菜类型 减排潜力
下载PDF
Reaction behavior of kaolinite with ferric oxide during reduction roasting 被引量:20
9
作者 Xiao-bin LI Hong-yang WANG +4 位作者 Qiu-sheng ZHOU Tian-gui QI Gui-hua LIU Zhi-hong PENG Yi-lin WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第1期186-193,共8页
The pre-separation of silica and alumina in aluminosilicates is of great significance for efficiently treating alumina-/ silica-bearing minerals for alumina production. In this work, the reaction behavior of kaolinite... The pre-separation of silica and alumina in aluminosilicates is of great significance for efficiently treating alumina-/ silica-bearing minerals for alumina production. In this work, the reaction behavior of kaolinite with ferric oxide during reduction roasting was investigated. The results of thermodynamic analyses and reduction roasting experiments show that ferrous oxide obtained from ferric oxide reduction preferentially reacts with alumina in kaolinite to form hercynite, meanwhile the silica in kaolinite is transformed into quartz solid solution and/or cristobalite solid solution. With increasing roasting temperature, fayalite formed by reaction of surplus ferrous oxide with silica at low temperature is reduced to silica and metallic iron in the presence of sufficient carbon dosage. However, increasing roasting temperature and decreasing Fe2O3/Al2O3 molar ratio favor mullite formation. The complete conversion of kaolinte into free silica and hercynite can be obtained by roasting raw meal of kaolin, ferric oxide and coal powder with Fe2O3/Al2O3/C molar ratio of 1.2:2.0:1.2 at 1373 K for 60 min. This work may facilitate the development of a technique for comprehensively utilizing silica and alumina in aluminosilicates. 展开更多
关键词 KAoLIN FE2o3 HERCYNITE quartz solid solution cristobalite solid solution reduction roasting
下载PDF
Photocatalytic reduction of carbon dioxide to methanol by Cu_2O/SiC nanocrystallite under visible light irradiation 被引量:8
10
作者 Huiling Li Yonggen Lei +4 位作者 Ying Huang Yueping Fang Yuehua Xu Li Zhu Xin Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第2期145-150,共6页
The Cu2O/SiC photocatalyst was obtained from SiC nanoparticles (NPs) modified by Cu2O. Their photocatalytic activities for reducing CO2 to CH3OH under visible light irradiation have been investigated. The results in... The Cu2O/SiC photocatalyst was obtained from SiC nanoparticles (NPs) modified by Cu2O. Their photocatalytic activities for reducing CO2 to CH3OH under visible light irradiation have been investigated. The results indicated that besides a small quantity of 6H-SiC, SiC NPs mainly consisted of 3C-SiC. The band gaps of SiC and Cu2O were estimated to be about 1.95 and 2.23 eV from UV-Vis spectra, respectively. The Cu2O modification can enhance the photocatalytic performance of SiC NPs, and the largest yields of methanol on SiC, Cu2O and Cu2O/SiC photocatalysts under visible light irradiation were 153, 104 and 191μmol/g, respectively. 展开更多
关键词 photocatalytic reduction carbon dioxide heterogeneous catalysts SIC CU2o NANoPARTICLES
下载PDF
Carbothermal reduction-chlorination-disproportionation of alumina in vacuum 被引量:5
11
作者 FENG Yue-bin YANG Bin DAI Yong-nian 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期215-221,共7页
The carbothermal reduction-chlorination-disproportionation of alumina in vacuum was investigated by XRD and thermodynamic analysis. The experiments on alumina and graphite at 1643-1843 K in vacuum were carried out. Th... The carbothermal reduction-chlorination-disproportionation of alumina in vacuum was investigated by XRD and thermodynamic analysis. The experiments on alumina and graphite at 1643-1843 K in vacuum were carried out. The results demonstrate that AlCl3(g) reacts with Al2O(g) or Al(g) generated from the carbothermal reduction of alumina to form AlCl(g), and the AlCl(g) disproportionates to aluminum and AlCl3(g) at a lower temperature and the reaction rate of AlCl(g) reaches 90% at 980 K and 100 Pa. The aluminum can absorb CO to catalyze its disproportionation to C and CO2, and react backward with CO to form Al4C3, Al2O3, C and CO2, resulting in the aluminum product containing C, Al4C3 and Al2O3. The impurities in the aluminum product decrease as the AlCl(g) disproportionation temperature decreases. AlCl3 condenses at a temperature approximated to the room temperature. 展开更多
关键词 carbothermal reduction AL2o3 AlCl VACUUM DISPRoPoRTIoNATIoN
下载PDF
Study on methane selective catalytic reduction of NO on Pt/Ce_(0.67)Zr_(0.33)O_2 and its application 被引量:9
12
作者 Zhimin Liu Kangcai Wang Xiaoyu Zhang Jianli Wang Hongyan Cao Maochu Gong Yaoqiang Chen 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第1期66-70,共5页
Monolithic catalysts of Pt/La-Al2O3 and Pt/Ce0.67Zr0.3302 were prepared to investigate methane selective catalytic reduction (SCR) of NO. The results indicate that Pt/Ce0.67Zr0.33O2 shows high activity and both NO a... Monolithic catalysts of Pt/La-Al2O3 and Pt/Ce0.67Zr0.3302 were prepared to investigate methane selective catalytic reduction (SCR) of NO. The results indicate that Pt/Ce0.67Zr0.33O2 shows high activity and both NO and CH4 can be converted completely at 450℃. Meanwhile, NO and CH4 can be converted completely when there exists excess oxygen. The Pt/Ce0.67Zr0.33O2 catalyst were further investigated by using methane as reducing agent to SCR NO in a novel equipment which combined the CH4 selective catalytic reduction of NO with methane combustion. The result shows that the catalyst is high active and the novel equipment is very effective. The conversion of NO is above 92% under the conditions used in this work. The prepared burner and catalysts have great potential for application. 展开更多
关键词 Pt/Ce0.67Zr0.33o2 selective catalytic reduction No catalytic burner APPLICATIoN
下载PDF
Photocatalytic performance of K2Ti6O13 whiskers to H2 evolution and CO2 photo-reduction 被引量:4
13
作者 L. F. Garay-Rodríguez L.M.Torres-Martínez E.Moctezuma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期18-28,共11页
K2Ti6O13 whiskers were synthesized by conventional sol-gel method, sono-chemical assisted and microwave assisted sol-gel method in order to obtain catalysts with different particle sizes and to modify their optical, t... K2Ti6O13 whiskers were synthesized by conventional sol-gel method, sono-chemical assisted and microwave assisted sol-gel method in order to obtain catalysts with different particle sizes and to modify their optical, textural and electrochemical properties. These modifications improved their photocatalytic activity for H2 evolution and CO2 photo-reduction. Long K2Ti6O13 whiskers prepared by ultrasound assisted sol-gel method are the most active photocatalysts for the hydrogen evolution reaction using pure water as reactant (U-SG, 10,065 μmol g^-1). In contrast, an opposite behavior was observed using a mixture of ethanol-water, where the highest activity was achieved by the shortest and less crystalline K2Ti6O13 whiskers (C-SG, 3,2871 μmol g^-1). In case of CO2 photo-reduction, long whiskers that were also prepared by the sono-chemical assisted sol-gel method were the most active to transform CO2 to formaldehyde, methane, methanol and hydrogen. The EFB value of this catalyst is located very close to the potential for formaldehyde production and favors the selectivity to this organic product. 展开更多
关键词 K2Ti6o13 SoL-GEL WHISKERS HYDRoGEN EVoLUTIoN Co2 reduction
下载PDF
Mechanistic insight into N_2O formation during NO reduction by NH_3 over Pd/CeO_2 catalyst in the absence of O_2 被引量:6
14
作者 Liping Sheng Zhaoxia Ma +6 位作者 Shiyuan Chen Jinze Lou Chengye Li Songda Li Ze Zhang Yong Wang Hangsheng Yang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第7期1070-1077,共8页
N2O is a major by-product emitted during low-temperature selective catalytic reduction of NO with NH3(NH3-SCR), which causes a series of serious environmental problems. A full understanding of the N2O formation mechan... N2O is a major by-product emitted during low-temperature selective catalytic reduction of NO with NH3(NH3-SCR), which causes a series of serious environmental problems. A full understanding of the N2O formation mechanism is essential to suppress the N2O emission during the low-temperature NH3-SCR, and requires an intensive study of this heterogeneous catalysis process. In this study, we investigated the reaction between NH3 and NO over a Pd/CeO2 catalyst in the absence of O2, using X-ray photoelectron spectroscopy, NH3-temperature-programmed desorption, NO-temperature-programmed desorption, and in-situ Fourier-transform infrared spectroscopy. Our results indicate that the N2O formation mechanism is reaction-temperature-dependent. At temperatures below 250 ℃, the dissociation of HON, which is produced from the reaction between surface H· adatoms and adsorbed NO, is the key process for N2O formation. At temperatures above 250 ℃,the reaction between NO and surface N·, which is produced by NO dissociation, is the only route for N2O formation, and the dissociation of NO is the rate-determining step. Under optimal reaction conditions, a high performance with nearly 100% NO conversion and 100% N2 selectivity could be achieved. These results provide important information to clarify the mechanism of N2O formation and possible suppression of N2 O emission during low-temperature NH3-SCR. 展开更多
关键词 N2o formation No reduction Pd/Ceo2 catalyst in-situ IR spectroscopy Mechanism
下载PDF
Evaluation of H2 Influence on the Evolution Mechanism of NOx Storage and Reduction over Pt–Ba–Ce/c-Al2O3 Catalysts 被引量:3
15
作者 Pan Wang Jing Yi +2 位作者 Chuan Sun Peng Luo Lili Lei 《Engineering》 SCIE EI 2019年第3期568-575,共8页
In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) st... In this investigation, Pt–Ba–Ce/c-Al2O3 catalysts were prepared by incipient wetness impregnation and experiments were performed to evaluate the influence of H2 on the evolution mechanism of nitrogen oxides (NOx) storage and reduction (NSR). The physical and chemical properties of the Pt–Ba–Ce/c- Al2O3 catalysts were studied using a combination of characterization techniques, which showed that PtOx, CeO2, and BaCO3, whose peaks were observed in X-ray diffraction (XRD) spectra, dispersed well on the c-Al2O3, as shown by transmission electron microscope (TEM), and that the difference between Ce3+ and Ce4+, as detected by X-ray photoelectron spectroscopy (XPS), facilitated the migration of active oxygen over the catalyst. In the process of a complete NSR experiment, the NOx storage capability was greatly enhanced in the temperature range of 250–350℃, and reached a maximum value of 315.3μmol·gcat^-1 at 350℃, which was ascribed to the increase in NO2 yield. In a lean and rich cycling experiment, the results showed that NOx storage efficiency and conversion were increased when the time of H2 exposure (i.e., 30, 45, and 60 s) was extended. The maximum NOx conversion of the catalyst reached 83.5% when the duration of the lean and rich phases was 240 and 60 s, respectively. The results revealed that increasing the content of H2 by an appropriate amount was favorable to the NSR mechanism due to increased decomposition of nitrate or nitrite, and the refreshing of trapping sites for the next cycle of NSR. 展开更多
关键词 Pt–Ba–Ce/c-Al2o3 CATALYSTS Physicochemical properties Nox storage and reduction emission H2 reductant
下载PDF
Performance of V_2O_5-WO_3-MoO_3/TiO_2 Catalyst for Selective Catalytic Reduction of NO_x by NH_3 被引量:9
16
作者 高岩 栾涛 +2 位作者 吕涛 程凯 徐宏明 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第1期1-7,共7页
The V/O5-WO3-MoOy'TiO2 honeycomb catalyst was prepared with industrial grade chemicals. The structural and physico-chemical properties were analyzed with X-ray diffraction (XRD), scanning electron micrograph (SEM... The V/O5-WO3-MoOy'TiO2 honeycomb catalyst was prepared with industrial grade chemicals. The structural and physico-chemical properties were analyzed with X-ray diffraction (XRD), scanning electron micrograph (SEM) and mercury porosimetry. The NOx conversion and durability were investigated on a pilot plant test set under the actual operational conditions of a coal fired boiler. The catalyst monolith had good formability with mass per- centage of V : W : Mo : TiO2 : fiber glass = 1 : 4.5 : 4.5 : 72 : 18. Vanadium, tungsten and molybdenum species were highly dispersed on anatase TiO2 without causing the transformation of anatase TiO2 to ruffle by calcining under a current of air at 450℃ for 4.5 h, but there were some degrees of crystal distortion. The catalyst particle sizes were almost uniform with close pile-up and the pore structure was regular with complete macro-pore formation and large specific surface area. The NOx conversion was sensitive to temperature but nearly insensitive to NH3. The catalyst showed strong adaptability to NOx concentration with activity above 80% in the range of 615 1640 mg.m-3. Within the range of 720-8640 h continuous operation, the NOx conversion dropped at a rate of about 1% reduction per 600 h. 展开更多
关键词 selective catalytic reduction V2o5-Wo3-Moo3/Zio2 catalyst physico-chemical property flue gas life time
下载PDF
Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH_3 over CuO/Al_2O_3/Cordierite Catalyst 被引量:6
17
作者 雷志刚 龙爱斌 +1 位作者 贾美如 刘学义 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第5期721-729,共9页
The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The... The CuO/γ-Al2O3/cordierite catalyst, after being sulfated by sulfur dioxide (SO2) at 673 K, exhibits high activities for selective catalytic reduction (SCR) of nitrogen oxide (NO) with ammonia (NH3) at 573-723 K. The intrinsic kinetics of SCR of NO with NH3 over CuO/γ-Al2O3/cordierite catalyst has been measured in a fixed-bed reactor in the absence of internal and external diffusions. The experimental results show that the reaction rate can be quantified by a first-order expression with activation energy Eá of 94.01 kJ·mol-1 and the corresponding p re-exponential factor A′ of 3.39×108 cm3·g-1·s-1 when NH3 is excessive. However, when NH3 is not enough, an E ley-Rideal kinetic model based on experimental data is derived with Ea of 105.79 kJ·mol-1, the corresponding A of 2 .94×109 cm3·g-1·s-1, heat of adsorption-Hads of 87.90 kJ·mol-1 and the corresponding Aads of 9.24 cm3·mol-1. The intrinsic kinetic model obtained was incorporated in a 3D mathematical model of monolithic reactor, and the agreement of the prediction with experimental data indicates that the present kinetic model is adequate for the reac-tor design and engineering scale-up. 展开更多
关键词 kinetics selective catalytic reduction Cuo/γ-Al2o3/cordierite catalyst monolithic honeycomb reactor mathematical model
下载PDF
Effect of B2O3 addition on oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets with simulated coke oven gas 被引量:4
18
作者 Wei-dong TANG Song-tao YANG Xiang-xin XUE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第7期1549-1559,共11页
The oxidation induration and reduction swelling behavior of the chromium-bearing vanadium titanomagnetite pellets (CVTP) with B2O3 addition were investigated. Besides, the reduction swelling index (RSI) and compressiv... The oxidation induration and reduction swelling behavior of the chromium-bearing vanadium titanomagnetite pellets (CVTP) with B2O3 addition were investigated. Besides, the reduction swelling index (RSI) and compressive strength (CS) of the reduced CVTP were also examined using the simulated coke oven gas (COG). The results suggested that the CS of CVTP was increased from 2448 to 3819.2 N, while the porosity of CVTP was decreased from 14.86% to 10.03% with the increase in B2O3 addition amounts. Moreover, the B2O3 mainly existed in the forms of TiB0.024O2 and Fe3BO5 in both CVTP and the reduced CVTP. Specifically, the CS of the reduced CVTP was elevated from 901 to 956.2 N, while the RSI was reduced from 5.87% to 3.81% as the B2O3 addition amounts were increased. Taken together, B2O3 addition would facilitate the aggregation and diffusion of metallic iron particles, which contributed to reducing the formation of metal iron whiskers and weakening the reduction swelling behavior. 展开更多
关键词 B2o3 oxidation induration reduction swelling index coke oven gas chromium-bearing vanadium titanomagnetite pellets
下载PDF
Transfer and Reaction Performances of Selective Catalytic Reduction of NzO with CO over Monolith Catalysts 被引量:3
19
作者 代成娜 雷志刚 +2 位作者 王玉丽 张润铎 陈标华 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第8期835-843,共9页
This work tries to identify the relationship between geometric configuration of monolith catalysts, and transfer and reaction performances for selective catalytic reduction of N2O with CO. Monolith catalysts with five... This work tries to identify the relationship between geometric configuration of monolith catalysts, and transfer and reaction performances for selective catalytic reduction of N2O with CO. Monolith catalysts with five different channel shapes (circle, regular triangle, rectangle, square and hexagon), was investigated to make a comprehensive comparison of their pressure drop, heat transfer Nu number, mass transfer Sh number and N2O conversion. It was found that monolith catalysts have a much lower pressure drop than that of traditional packed bed, and for monolith catalysts with different channel shapes, pressure drop decreases in the order of regular triangle > rectangle > square > hexagon > circle. The order of Nu is in regular triangle > rectangle ≈ square > hexagon > circle, similar to that of Sh. N2O conversion follows the order of regular triangle > rectangular ≈ square ≈ circle > hexagon. The results indicate that chemical reaction including internal diffusion is the controlling step in the selective catalytic reduction of N2O removal with CO. In addition, channel size and gas velocity also have influence on N2O conversion and pressure drop. 展开更多
关键词 selective catalytic reduction N2o conversion momentum transfer heat transfer mass transfer monolith catalysts mathematical modeling
下载PDF
Thermodynamic studies on gas-based reduction of vanadium titano-magnetite pellets 被引量:11
20
作者 Jun-wei Chen Yang Jiao Xi-dong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第7期822-830,共9页
Numerous studies have focused on the reduction thermodynamics of ordinary iron ore;by contrast, the literature contains few thermodynamic studies on the gas-based reduction of vanadium titano-magnetite (VTM) in mixed ... Numerous studies have focused on the reduction thermodynamics of ordinary iron ore;by contrast, the literature contains few thermodynamic studies on the gas-based reduction of vanadium titano-magnetite (VTM) in mixed atmospheres of H2, CO, H2O, CO2, and N2. In this paper, thermodynamic studies on the reduction of oxidized VTM pellets were systematically conducted in an atmosphere of a C–H–O system as a reducing agent. The results indicate that VTM of an equivalent valence state is more difficult to reduce than ordinary iron ore. A reduction equilibrium diagram using the C–H–O system as a reducing agent was obtained;it clearly describes the reduction process. Experiments were performed to investigate the effects of the reduction temperature, the gas composition, and two types of iron ores on the reduction of oxidized VTM pellets. The results show that the final reduction degree increases with increasing reduction temperature, increasing molar ratio of H2/(H2 + CO), and decreasing H2O, CO2, and N2 contents. In addition, the reduction processes under various conditions are discussed. All of the results of the reduction experiments are consistent with those of theoretical thermodynamic analysis. This study is expected to provide valuable thermodynamic theory on the industrial applications of VTM. 展开更多
关键词 VANADIUM titano-magnetite gas-based reduction C-H-o system thermodynamics
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部