The phase transition,morphology,stability and pulverization performance of dicalcium silicate(C_(2)S)with different Na_(2)O additions during the high-temperature sintering process were studied using XRD,SEM-EDS,FT-IR,...The phase transition,morphology,stability and pulverization performance of dicalcium silicate(C_(2)S)with different Na_(2)O additions during the high-temperature sintering process were studied using XRD,SEM-EDS,FT-IR,and Raman spectra methods.When the CaO to SiO_(2) molar ratio is 2.0 and the Na_(2)O to SiO_(2) molar ratio is below 0.20,the crystalline calcium silicate compounds includeγ-C_(2)S andβ-C_(2)S.As the Na_(2)O addition increases,the proportion,crystallinity and grain size ofβ-C_(2)S in the sintered products increase,those parameters ofγ-C_(2)S decrease,and the content of amorphous phase increases.Na_(2)O mainly forms solid solutions inβ-C_(2)S and inhibits the transition ofβ-C_(2)S toγ-C_(2)S,resulting in the sintered products unpulverized.The stability of sintered products in alkali solution decreases significantly with the increasing Na_(2)O additions,and theβ-C_(2)S solid solution with Na_(2)O is less stable thanγ-C_(2)S.The mechanism that Na_(2)O affects the transition of C_(2)S as well as its stability was also discussed,which can give actual guidance for the treatment of low-grade alumina-containing resources by the sintering process.展开更多
The surface hydrophobization and flotation of a xanthate−hydroxamate collector toward copper oxide mineral were compared with the combined collectors of xanthate and hydroxamate through water contact angle(WCA)and mic...The surface hydrophobization and flotation of a xanthate−hydroxamate collector toward copper oxide mineral were compared with the combined collectors of xanthate and hydroxamate through water contact angle(WCA)and micro-flotation experiments.The results showed that S-[(2-hydroxyamino)-2-oxoethyl]-O-octyl-dithiocarbonate ester(HAOODE)exhibited stronger hydrophobization and better flotation performance to malachite(Cu2(OH)2CO3)than octyl-hydroxamic acid(OHA)and its combination with S-allyl-O-ethyl xanthate ester(AEXE).To understand the hydrophobic intensification mechanism of HAOODE to malachite,zeta potential,atomic force microscopy(AFM)and XPS measurements were carried out.The results recommended that malachite chemisorbed HAOODE to form Cu—HAOODE complexes in which the hydroxamate—(O,O)—Cu and—O—C(—S—Cu)—S—configurations co-existed.The co-adsorption of HAOODE’s hetero-difunctional groups was more stable than the single-functionalgroup adsorption of OHA and AEXE,which produced the“loop”structure and intensified the self-assembly alignment of HAOODE on malachite surfaces.In addition,the“h”shape steric orientation of the double hydrophobic groups in HAOODE facilitated stronger hydrophobization toward malachite than the“line”or“V”hydrophobic carbon chains of OHA or AEXE.Thus,HAOODE achieved the preferable flotation recovery of malachite particles in comparison with OHA and AEXE.展开更多
基金Project(2018YFC1901903)supported by the National Key R&D Program of ChinaProjects(22078055,52074083,51674075)supported by the National Natural Science Foundation of China。
文摘The phase transition,morphology,stability and pulverization performance of dicalcium silicate(C_(2)S)with different Na_(2)O additions during the high-temperature sintering process were studied using XRD,SEM-EDS,FT-IR,and Raman spectra methods.When the CaO to SiO_(2) molar ratio is 2.0 and the Na_(2)O to SiO_(2) molar ratio is below 0.20,the crystalline calcium silicate compounds includeγ-C_(2)S andβ-C_(2)S.As the Na_(2)O addition increases,the proportion,crystallinity and grain size ofβ-C_(2)S in the sintered products increase,those parameters ofγ-C_(2)S decrease,and the content of amorphous phase increases.Na_(2)O mainly forms solid solutions inβ-C_(2)S and inhibits the transition ofβ-C_(2)S toγ-C_(2)S,resulting in the sintered products unpulverized.The stability of sintered products in alkali solution decreases significantly with the increasing Na_(2)O additions,and theβ-C_(2)S solid solution with Na_(2)O is less stable thanγ-C_(2)S.The mechanism that Na_(2)O affects the transition of C_(2)S as well as its stability was also discussed,which can give actual guidance for the treatment of low-grade alumina-containing resources by the sintering process.
基金Project(51474253)supported by the National Natural Science Foundation of China。
文摘The surface hydrophobization and flotation of a xanthate−hydroxamate collector toward copper oxide mineral were compared with the combined collectors of xanthate and hydroxamate through water contact angle(WCA)and micro-flotation experiments.The results showed that S-[(2-hydroxyamino)-2-oxoethyl]-O-octyl-dithiocarbonate ester(HAOODE)exhibited stronger hydrophobization and better flotation performance to malachite(Cu2(OH)2CO3)than octyl-hydroxamic acid(OHA)and its combination with S-allyl-O-ethyl xanthate ester(AEXE).To understand the hydrophobic intensification mechanism of HAOODE to malachite,zeta potential,atomic force microscopy(AFM)and XPS measurements were carried out.The results recommended that malachite chemisorbed HAOODE to form Cu—HAOODE complexes in which the hydroxamate—(O,O)—Cu and—O—C(—S—Cu)—S—configurations co-existed.The co-adsorption of HAOODE’s hetero-difunctional groups was more stable than the single-functionalgroup adsorption of OHA and AEXE,which produced the“loop”structure and intensified the self-assembly alignment of HAOODE on malachite surfaces.In addition,the“h”shape steric orientation of the double hydrophobic groups in HAOODE facilitated stronger hydrophobization toward malachite than the“line”or“V”hydrophobic carbon chains of OHA or AEXE.Thus,HAOODE achieved the preferable flotation recovery of malachite particles in comparison with OHA and AEXE.