As a ubiquitous reaction, glucosylation controls the bioactivity of cytokinins in plant growth and development. Here we show that genetic manipulation of zeatin-O- glucosylation regulates the formation of important ag...As a ubiquitous reaction, glucosylation controls the bioactivity of cytokinins in plant growth and development. Here we show that genetic manipulation of zeatin-O- glucosylation regulates the formation of important agronomic traits in rice by manipulating the expression of OscZOG1 gene, encoding a putative zeatin O-glucosyltransferase. We found that OscZOG~ was preferentially expressed in shoot and root meristematic tissues and nascent organs. The growth of lateral roots was stimulated in the overexpression lines, but inhibited in RNA interference lines. In shoots, knockdown of OscZOG1 expression by RNA interference significantly im- proved tillering, panicle branching, grain number per panicle and seed size, which are important agronomic traits for grain yield. In contrast, constitutive expression of OscZOG1 leads to negative effects on the formation of the grain-yielding traits with a marked increase in the accumulation levels of cis-zeatin O-glucoside (cZOG) in the transgenic rice plants. In this study,our findings demonstrate the feasibility of improving the critical yield-determinant agronomic traits, including tiller number, panicle branches, total grain number per panicle and grain weight by downregulating the expression level of OscZOG1. Our results suggest that modulating the levels of cytokinin glucosylation can function as a fine-tuning switch in regulating the formation of agronomic traits in rice.展开更多
基金supported in parts by the Ministry of Science and Technology of China(2012CB944802 and 2012AA101103)the National Natural Science Foundation of China(91317305)the Ministry of Agriculture of China(2014ZX08009-003)
文摘As a ubiquitous reaction, glucosylation controls the bioactivity of cytokinins in plant growth and development. Here we show that genetic manipulation of zeatin-O- glucosylation regulates the formation of important agronomic traits in rice by manipulating the expression of OscZOG1 gene, encoding a putative zeatin O-glucosyltransferase. We found that OscZOG~ was preferentially expressed in shoot and root meristematic tissues and nascent organs. The growth of lateral roots was stimulated in the overexpression lines, but inhibited in RNA interference lines. In shoots, knockdown of OscZOG1 expression by RNA interference significantly im- proved tillering, panicle branching, grain number per panicle and seed size, which are important agronomic traits for grain yield. In contrast, constitutive expression of OscZOG1 leads to negative effects on the formation of the grain-yielding traits with a marked increase in the accumulation levels of cis-zeatin O-glucoside (cZOG) in the transgenic rice plants. In this study,our findings demonstrate the feasibility of improving the critical yield-determinant agronomic traits, including tiller number, panicle branches, total grain number per panicle and grain weight by downregulating the expression level of OscZOG1. Our results suggest that modulating the levels of cytokinin glucosylation can function as a fine-tuning switch in regulating the formation of agronomic traits in rice.