Recent worldwide foodborne outbreaks emphasize the need for the development of rapid and accurate method for pathogen detection. To address such issues, a new colony based label-free detection method working on the pr...Recent worldwide foodborne outbreaks emphasize the need for the development of rapid and accurate method for pathogen detection. To address such issues, a new colony based label-free detection method working on the principles of elastic light scattering was introduced. In order to build libraries of scattering images for bacterial pathogens, it is pertinent to determine the effect of preparation and storage of the agar media on the scatter patterns. Scatter patterns of three Escherichia coli serovars (O26, O111 and O157) were studied and used in a model system, after growth on Sorbitol-MacConkey agar plates that were prepared and stored at different conditions in the laboratory. Quantitative image processing software was used to analyze variation in scatter patterns of the same serovar on media prepared under various standard laboratory conditions and to generate a cross-validation matrix for comparison. Based on the results, it was determined that attention should be given during preparation of media so that the agar plates are not air-dried more than 10 - 20 min after solidification at room temperature. The plates could be stored in sealed bags in cold room (4oC - 10oC) for up to a month before use. The findings of this study should provide guidelines in preparation, storage, and handling of media for generation of reproducible scatter patterns of bacterial colonies with the light scattering sensor for pathogen detection.展开更多
First-principles calculations based on density functional theory (DFr) and the generalized gradient approximation (GGA) have been used to study the adsorption of CO molecule on the Cu2O(111) oxygen-vacancy surfa...First-principles calculations based on density functional theory (DFr) and the generalized gradient approximation (GGA) have been used to study the adsorption of CO molecule on the Cu2O(111) oxygen-vacancy surface. Calculations indicate that the C-O bond is weakened upon adsorption compared with that over perfect surface. In addition, with the density increase of the defective sites, the adsorption energies of the defect-CO configuration increase whereas the C-O bond nearly remains constant.展开更多
The adsorptions of CO and 02 molecules individually on the stoichiometric Cu-terminatcd Cu20 (111) surface are investigated by first-principles calculations on the basis of the density functional theory. The calcula...The adsorptions of CO and 02 molecules individually on the stoichiometric Cu-terminatcd Cu20 (111) surface are investigated by first-principles calculations on the basis of the density functional theory. The calculated results indicate that the CO molecule preferably coordinates to the Cu2 site through its C atom with an adsorption energy of-1.69 eV, whereas the 02 molecule is most stably adsorbed in a tilt type with one O atom coordinating to the Cu2 site and the other O atom coordinating to the Cul site, and has an adsorption energy of -1.97 eV. From the analysis of density of states, it is observed that Cu 3d transfers electrons to 2π orbital of the CO molecule and the highest occupied 5σ orbital of the CO molecule transfers electrons to the substrate. The sharp band of Cu 4s is delocalized when compared to that before the CO molecule adsorption, and overlaps substantially with bands of the adsorbed CO molecule. There is a broadening of the 2π orbital of the 02 molecule because of its overlapping with the Cu 3d orbital, indicating that strong 3d-2π interactions are involved in the chemisorption of the 02 molecule on the surface.展开更多
文摘Recent worldwide foodborne outbreaks emphasize the need for the development of rapid and accurate method for pathogen detection. To address such issues, a new colony based label-free detection method working on the principles of elastic light scattering was introduced. In order to build libraries of scattering images for bacterial pathogens, it is pertinent to determine the effect of preparation and storage of the agar media on the scatter patterns. Scatter patterns of three Escherichia coli serovars (O26, O111 and O157) were studied and used in a model system, after growth on Sorbitol-MacConkey agar plates that were prepared and stored at different conditions in the laboratory. Quantitative image processing software was used to analyze variation in scatter patterns of the same serovar on media prepared under various standard laboratory conditions and to generate a cross-validation matrix for comparison. Based on the results, it was determined that attention should be given during preparation of media so that the agar plates are not air-dried more than 10 - 20 min after solidification at room temperature. The plates could be stored in sealed bags in cold room (4oC - 10oC) for up to a month before use. The findings of this study should provide guidelines in preparation, storage, and handling of media for generation of reproducible scatter patterns of bacterial colonies with the light scattering sensor for pathogen detection.
基金Supported by the National Natural Science Foundation of China (No. 10676007) and NCETFJ
文摘First-principles calculations based on density functional theory (DFr) and the generalized gradient approximation (GGA) have been used to study the adsorption of CO molecule on the Cu2O(111) oxygen-vacancy surface. Calculations indicate that the C-O bond is weakened upon adsorption compared with that over perfect surface. In addition, with the density increase of the defective sites, the adsorption energies of the defect-CO configuration increase whereas the C-O bond nearly remains constant.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03 Z428)the National Natural Science Foundation of China (Grant No. 50872005)+1 种基金the National Basic Research Program of China (Grant No. 2007CB613306)the Innovation Foundation of BUAA for Ph. D. Graduates
文摘The adsorptions of CO and 02 molecules individually on the stoichiometric Cu-terminatcd Cu20 (111) surface are investigated by first-principles calculations on the basis of the density functional theory. The calculated results indicate that the CO molecule preferably coordinates to the Cu2 site through its C atom with an adsorption energy of-1.69 eV, whereas the 02 molecule is most stably adsorbed in a tilt type with one O atom coordinating to the Cu2 site and the other O atom coordinating to the Cul site, and has an adsorption energy of -1.97 eV. From the analysis of density of states, it is observed that Cu 3d transfers electrons to 2π orbital of the CO molecule and the highest occupied 5σ orbital of the CO molecule transfers electrons to the substrate. The sharp band of Cu 4s is delocalized when compared to that before the CO molecule adsorption, and overlaps substantially with bands of the adsorbed CO molecule. There is a broadening of the 2π orbital of the 02 molecule because of its overlapping with the Cu 3d orbital, indicating that strong 3d-2π interactions are involved in the chemisorption of the 02 molecule on the surface.