因其速率快、稳定性高,非金属N与金属共掺杂的碳材料作为新型高效ORR催化剂而引起了人们的广泛关注.采用包含色散力校正的密度泛函理论方法系统地研究了氧分子在FeN_4掺杂的碳纳米管上的吸附、氢化特性.结果表明:(1)O_2倾向于以end-on...因其速率快、稳定性高,非金属N与金属共掺杂的碳材料作为新型高效ORR催化剂而引起了人们的广泛关注.采用包含色散力校正的密度泛函理论方法系统地研究了氧分子在FeN_4掺杂的碳纳米管上的吸附、氢化特性.结果表明:(1)O_2倾向于以end-on模式吸附在Fe顶位,O-O键与衬底表面成一定角度,并指向五元环,对应的吸附能为1.62 e V.(2)O_2在FeN_4-CNTs上更倾向于直接氢化为OOH,然后解离为O+OH,整个路径的限速步为OOH的解离,对应的势垒为1.19 eV.展开更多
掺杂是调制graphene催化特性的有效方法 .掺杂的石墨烯,因其具有对氧还原反应具有较高的活性,而作为一种新型高效质子交换膜燃料电池阴极材料.采用包含色散力校正的第一性原理的密度泛函理论方法 (DFT-D)系统的研究了O_2在CrN_4掺杂的...掺杂是调制graphene催化特性的有效方法 .掺杂的石墨烯,因其具有对氧还原反应具有较高的活性,而作为一种新型高效质子交换膜燃料电池阴极材料.采用包含色散力校正的第一性原理的密度泛函理论方法 (DFT-D)系统的研究了O_2在CrN_4掺杂的石墨烯上的吸附和氢化特性.结果表明:(1)O_2倾向于以side-on模式吸附在Cr顶位,形成O-Cr-O三元环结构,吸附能为1.75 e V;(2)O_2在Cr N4-Gra上更倾向于直接分解成O+O,并进一步氢化为O+OH,反应的限速步为O_2的分解,相应的反应势垒为0.48 e V.展开更多
因其较好的稳定性和催化活性,非金属N与金属共掺杂的富勒烯(C60)作为新型氧化还原反应(ORR)催化剂受到了人们的广泛关注.采用基于密度泛函理论的第一性原理方法系统地研究了Fe N4掺杂对C60催化特性的调制规律,揭示了O_2在Fe N4掺杂的C6...因其较好的稳定性和催化活性,非金属N与金属共掺杂的富勒烯(C60)作为新型氧化还原反应(ORR)催化剂受到了人们的广泛关注.采用基于密度泛函理论的第一性原理方法系统地研究了Fe N4掺杂对C60催化特性的调制规律,揭示了O_2在Fe N4掺杂的C60上的吸附和氢化特性.结果表明:(1)O_2倾向于以side-on模式吸附在Fe的顶位上,O-O键平行于C60的球切面,与Fe形成O-Fe-O三元环结构,对应的吸附能为1.48 e V.(2)O_2的氢化反应路径可以分为两条:(i)O_2先解离为O+O,然后氢化为O+OH.O_2的解离为反应的速控步,势垒为2.82 e V.(ii)O_2先氢化形成OOH结构,然后解离.氢化为反应的速控步,势垒为2.83 e V.展开更多
文摘因其速率快、稳定性高,非金属N与金属共掺杂的碳材料作为新型高效ORR催化剂而引起了人们的广泛关注.采用包含色散力校正的密度泛函理论方法系统地研究了氧分子在FeN_4掺杂的碳纳米管上的吸附、氢化特性.结果表明:(1)O_2倾向于以end-on模式吸附在Fe顶位,O-O键与衬底表面成一定角度,并指向五元环,对应的吸附能为1.62 e V.(2)O_2在FeN_4-CNTs上更倾向于直接氢化为OOH,然后解离为O+OH,整个路径的限速步为OOH的解离,对应的势垒为1.19 eV.
文摘掺杂是调制graphene催化特性的有效方法 .掺杂的石墨烯,因其具有对氧还原反应具有较高的活性,而作为一种新型高效质子交换膜燃料电池阴极材料.采用包含色散力校正的第一性原理的密度泛函理论方法 (DFT-D)系统的研究了O_2在CrN_4掺杂的石墨烯上的吸附和氢化特性.结果表明:(1)O_2倾向于以side-on模式吸附在Cr顶位,形成O-Cr-O三元环结构,吸附能为1.75 e V;(2)O_2在Cr N4-Gra上更倾向于直接分解成O+O,并进一步氢化为O+OH,反应的限速步为O_2的分解,相应的反应势垒为0.48 e V.
文摘因其较好的稳定性和催化活性,非金属N与金属共掺杂的富勒烯(C60)作为新型氧化还原反应(ORR)催化剂受到了人们的广泛关注.采用基于密度泛函理论的第一性原理方法系统地研究了Fe N4掺杂对C60催化特性的调制规律,揭示了O_2在Fe N4掺杂的C60上的吸附和氢化特性.结果表明:(1)O_2倾向于以side-on模式吸附在Fe的顶位上,O-O键平行于C60的球切面,与Fe形成O-Fe-O三元环结构,对应的吸附能为1.48 e V.(2)O_2的氢化反应路径可以分为两条:(i)O_2先解离为O+O,然后氢化为O+OH.O_2的解离为反应的速控步,势垒为2.82 e V.(ii)O_2先氢化形成OOH结构,然后解离.氢化为反应的速控步,势垒为2.83 e V.