The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the ...The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the problem of semantic gap that low level features extracted by computers always fail to coincide with high-level concepts interpreted by humans. In this paper, we present a generic scheme for the detection video semantic concepts based on multiple visual features machine learning. Various global and local low-level visual features are systelrtically investigated, and kernelbased learning method equips the concept detection system to explore the potential of these features. Then we combine the different features and sub-systen on both classifier-level and kernel-level fusion that contribute to a more robust system Our proposed system is tested on the TRECVID dataset. The resulted Mean Average Precision (MAP) score is rmch better than the benchmark perforrmnce, which proves that our concepts detection engine develops a generic model and perforrrs well on both object and scene type concepts.展开更多
Under the background of rapid progress of science and technology,the trend of media integration is constantly strengthened,which urges the original media management concept to be constantly changed and to form a new m...Under the background of rapid progress of science and technology,the trend of media integration is constantly strengthened,which urges the original media management concept to be constantly changed and to form a new media management concept.In order to apply to the development needs under the trend of media integration.This paper summarizes the media integration,analyzes the influence of the media integration trend on the media management concept,explores the direction of the evolution of the media management concept under the media integration trend,and aims to provide a reference for the development of the media industry.展开更多
大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题...大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题.针对这些问题,提出一种基于混合特征提取的流数据概念漂移处理方法(concept drift processing method of streaming data based on mixed feature extraction,MFECD).该方法首先采用不同尺度的卷积核对数据进行建模以构建拼接特征,采用门控机制将浅层输入和拼接特征融合,作为不同网络层次输入进行自适应集成,以获得能够兼顾细节信息和语义信息的数据特性.在此基础上,采用注意力机制和相似度计算评估流数据不同时刻的重要性,以增强数据流关键位点的时序特性.实验结果表明,该方法能有效提取流数据中包含的复杂数据特征和时序特征,提高了数据流中概念漂移的处理能力.展开更多
基金Acknowledgements This paper was supported by the coUabomtive Research Project SEV under Cant No. 01100474 between Beijing University of Posts and Telecorrrcnications and France Telecom R&D Beijing the National Natural Science Foundation of China under Cant No. 90920001 the Caduate Innovation Fund of SICE, BUPT, 2011.
文摘The rapid growth of multimedia content necessitates powerful technologies to filter, classify, index and retrieve video documents more efficiently. However, the essential bottleneck of image and video analysis is the problem of semantic gap that low level features extracted by computers always fail to coincide with high-level concepts interpreted by humans. In this paper, we present a generic scheme for the detection video semantic concepts based on multiple visual features machine learning. Various global and local low-level visual features are systelrtically investigated, and kernelbased learning method equips the concept detection system to explore the potential of these features. Then we combine the different features and sub-systen on both classifier-level and kernel-level fusion that contribute to a more robust system Our proposed system is tested on the TRECVID dataset. The resulted Mean Average Precision (MAP) score is rmch better than the benchmark perforrmnce, which proves that our concepts detection engine develops a generic model and perforrrs well on both object and scene type concepts.
文摘Under the background of rapid progress of science and technology,the trend of media integration is constantly strengthened,which urges the original media management concept to be constantly changed and to form a new media management concept.In order to apply to the development needs under the trend of media integration.This paper summarizes the media integration,analyzes the influence of the media integration trend on the media management concept,explores the direction of the evolution of the media management concept under the media integration trend,and aims to provide a reference for the development of the media industry.
文摘大数据时代,越来越多的数据以数据流的形式产生,由于其具有快速、无限、不稳定及动态变化等特性,使得概念漂移成为流数据挖掘中一个重要但困难的问题.目前多数概念漂移处理方法存在信息提取能力有限且未充分考虑流数据的时序特性等问题.针对这些问题,提出一种基于混合特征提取的流数据概念漂移处理方法(concept drift processing method of streaming data based on mixed feature extraction,MFECD).该方法首先采用不同尺度的卷积核对数据进行建模以构建拼接特征,采用门控机制将浅层输入和拼接特征融合,作为不同网络层次输入进行自适应集成,以获得能够兼顾细节信息和语义信息的数据特性.在此基础上,采用注意力机制和相似度计算评估流数据不同时刻的重要性,以增强数据流关键位点的时序特性.实验结果表明,该方法能有效提取流数据中包含的复杂数据特征和时序特征,提高了数据流中概念漂移的处理能力.